DOI QR코드

DOI QR Code

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan (Department of Plant Science and Technology, Chung-Ang University) ;
  • Heo, Lynn (Department of Plant Science and Technology, Chung-Ang University) ;
  • Han, Sang-Wook (Department of Plant Science and Technology, Chung-Ang University)
  • Received : 2021.09.09
  • Accepted : 2021.10.13
  • Published : 2021.12.01

Abstract

Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A2C1013040). This research was supported by the Chung-Ang University research grant in 2021. (to S.W. Han).

References

  1. Abdollahi, S., Rasooli, I. and Mousavi Gargari, S. L. 2018. The role of TonB-dependent copper receptor in virulence of Acinetobacter baumannii. Infect. Genet. Evol. 60:181-190. https://doi.org/10.1016/j.meegid.2018.03.001
  2. Bahar, O. and Burdman, S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. Isr. J. Plant Sci. 58:19-31. https://doi.org/10.1560/IJPS.58.1.19
  3. Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22:909-920. https://doi.org/10.1094/mpmi-22-8-0909
  4. Bosch, M., Garrido, E., Llagostera, M., Perez de Rozas, A. M., Badiola, I. and Barbe, J. 2002. Pasteurella multocida exbB, exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiol. Lett. 210:201-208. https://doi.org/10.1016/S0378-1097(02)00626-2
  5. Burdman, S. and Walcott, R. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815. https://doi.org/10.1111/j.1364-3703.2012.00810.x
  6. Chew, S. Y., Chee, W. J. Y. and Than, L. T. L. 2019. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 26:52. https://doi.org/10.1186/s12929-019-0546-5
  7. Cui, J., Ma, C., Ye, G., Shi, Y., Xu, W., Zhong, L., Wang, J., Yin, Y., Zhang, X. and Wang, H. 2017. DnaJ (hsp40) of Streptococcus pneumoniae is involved in bacterial virulence and elicits a strong natural immune reaction via PI3K/JNK. Mol. Immunol. 83:137-146. https://doi.org/10.1016/j.molimm.2017.01.021
  8. De Maio, A. 1999. Heat shock proteins: facts, thoughts, and dreams. Shock 11:1-12. https://doi.org/10.1097/00024382-199901000-00001
  9. Felgner, S., Frahm, M., Kocijancic, D., Rohde, M., Eckweiler, D., Bielecka, A., Bueno, E., Cava, F., Abraham, W.-R., Curtiss, R., 3rd, Haussler, S., Erhardt, M. and Weiss, S. 2016. aroAdeficient Salmonella enterica serovar typhimurium is more than a metabolically attenuated mutant. Mbio 7:e01220-16.
  10. Fernie, A. R., Carrari, F. and Sweetlove, L. J. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7:254-261. https://doi.org/10.1016/j.pbi.2004.03.007
  11. Fujita, M., Mori, K., Hara, H., Hishiyama, S., Kamimura, N. and Masai, E. 2019. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2:432. https://doi.org/10.1038/s42003-019-0676-z
  12. Giltner, C. L., Habash, M. and Burrows, L. L. 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J. Mol. Biol. 398:444-461. https://doi.org/10.1016/j.jmb.2010.03.028
  13. Goncalves, I. L., Mielniczki-Pereira, A. A., Piovezan Borges, A. C. and Valduga, A. T. 2016. Metabolic modeling and comparative biochemistry in glyoxylate cycle. Acta Sci. Biol. Sci. 38:1-6.
  14. Guo, W., Cui, Y.-P., Li, Y.-R., Che, Y.-Z., Yuan, L., Zou, L.-F., Zou, H.-S. and Chen, G.-Y. 2012. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology 158:505-518. https://doi.org/10.1099/mic.0.050419-0
  15. Hafkenscheid, J. C. M. and Dijt, C. C. M. 1979. Determination of serum aminotransferases: activation by pyridoxal-5'-phosphate in relation to substrate concentration. Clin. Chem. 25:55-59. https://doi.org/10.1093/clinchem/25.1.55
  16. Hamblin, P. A., Bourne, N. A. and Armitage, J. P. 1997. Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. Mol. Microbiol. 24:41-51. https://doi.org/10.1046/j.1365-2958.1997.3241682.x
  17. Han, X., Sun, R., Sandalova, T. and Achour, A. 2018. Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae. Open Biol. 8:170248. https://doi.org/10.1098/rsob.170248
  18. Hu, Y.-H., Dang, W. and Sun, L. 2012. A TonB-dependent outer membrane receptor of Pseudomonas fluorescens: virulence and vaccine potential. Arch. Microbiol. 194:795-802. https://doi.org/10.1007/s00203-012-0812-3
  19. Jansen, R. S., Mandyoli, L., Hughes, R., Wakabayashi, S., Pinkham, J. T., Selbach, B., Guinn, K. M., Rubin, E. J., Sacchettini, J. C. and Rhee, K. Y. 2020. Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nat. Commun. 11:1960. https://doi.org/10.1038/s41467-020-15876-8
  20. Johnson, K. L. and Walcott, R. R. 2013. Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon. J. Phytopathol. 161:562-573. https://doi.org/10.1111/jph.12106
  21. Johnson, K. L., Minsavage, G. V., Le, T., Jones, J. B. and Walcott, R. R. 2011. Efficacy of a nonpathogenic Acidovorax citrulli strain as a biocontrol seed treatment for bacterial fruit blotch of cucurbits. Plant Dis. 95:697-704. https://doi.org/10.1094/pdis-09-10-0660
  22. Johnson, T. L., Waack, U., Smith, S., Mobley, H. and Sandkvist, M. 2015. Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J. Bacteriol. 198:711-719. https://doi.org/10.1128/JB.00622-15
  23. Kai, K., Ohnishi, H., Kiba, A., Ohnishi, K. and Hikichi, Y. 2016. Studies on the biosynthesis of ralfuranones in Ralstonia solanacearum. Biosci. Biotechnol. Biochem. 80:440-444. https://doi.org/10.1080/09168451.2015.1116931
  24. Kim, D. H., Nguyen, Q. T. and Yang, J. K. 2020a. Biochemical characterization of homoserine dehydrogenase from Pseudomonas aeruginosa. Bull. Korean Chem. Soc. 41:127-132. https://doi.org/10.1002/bkcs.11929
  25. Kim, M., Lee, J., Heo, L. and Han, S.-W. 2020b. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of Acidovorax citrulli. Front. Plant Sci. 11:569552. https://doi.org/10.3389/fpls.2020.569552
  26. Kim, M., Lee, J., Heo, L., Lee, S. J. and Han, S.-W. 2021. Proteomic and phenotypic analyses of a putative glycerol3-phosphate dehydrogenase required for virulence in Acidovorax citrulli. Plant Pathol. J. 37:36-46. https://doi.org/10.5423/PPJ.OA.12.2020.0221
  27. King, A. M., Pretre, G., Bartpho, T., Sermswan, R. W., Toma, C., Suzuki, T., Eshghi, A., Picardeau, M., Adler, B. and Murray, G. L. 2014. High-temperature protein G is an essential virulence factor of Leptospira interrogans. Infect. Immun. 82:1123-1131. https://doi.org/10.1128/IAI.01546-13
  28. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  29. Ndrepepa, G. and Kastrati, A. 2019. Alanine aminotransferase-a marker of cardiovascular risk at high and low activity levels. J. Lab. Precis. Med. 4:29. https://doi.org/10.21037/jlpm.2019.08.01
  30. Ollis, A. A. and Postle, K. 2012. Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J. Bacteriol. 194:3078-3087. https://doi.org/10.1128/JB.00018-12
  31. Park, H.-J., Seong, H. J., Lee, J., Heo, L., Sul, W. J. and Han, S.- W. 2021. Two DNA methyltransferases for site-Specific 6mA and 5mC DNA modification in Xanthomonas euvesicatoria. Front. Plant Sci. 12:621466. https://doi.org/10.3389/fpls.2021.621466
  32. Sanders, D. A., Mendez, B. and Koshland, D. E. Jr. 1989. Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J. Bacteriol. 171:6271-6278. https://doi.org/10.1128/jb.171.11.6271-6278.1989
  33. Schertl, P. and Braun, H.-P. 2014. Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5:163. https://doi.org/10.3389/fpls.2014.00163
  34. Shin, Y.-C., Yun, H. and Park, H. H. 2018. Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17. Sci. Rep. 8:11454. https://doi.org/10.1038/s41598-018-29846-0
  35. Song, Y.-R., Hwang, I. S. and Oh, C.-S. 2020. Natural variation in virulence of Acidovorax citrulli isolates that cause bacterial fruit blotch in watermelon, depending on infection routes. Plant Pathol. J. 36:29-42. https://doi.org/10.5423/PPJ.OA.10.2019.0254
  36. Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36. https://doi.org/10.1093/nar/28.1.33
  37. Wadhams, G. H. and Armitage, J. P. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:1024-1037. https://doi.org/10.1038/nrm1524
  38. Yang, X., Thornburg, T., Suo, Z., Jun, S., Robison, A., Li, J., Lim, T., Cao, L., Hoyt, T., Avci, R. and Pascual, D. W. 2012. Flagella overexpression attenuates Salmonella pathogenesis. PLoS ONE 7:e46828. https://doi.org/10.1371/journal.pone.0046828
  39. Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits. Front. Microbiol. 9:507. https://doi.org/10.3389/fmicb.2018.00507