DOI QR코드

DOI QR Code

Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel

금속 기판위에 Cr과 Al 증착 및 열처리 융합 기술에 의한 표면 형상 변화

  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College) ;
  • Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
  • 김경보 (인하공업전문대학 금속재료과) ;
  • 이종필 (중원대학교 전기전자공학과) ;
  • 김무진 (강남대학교 IoT전자공학과)
  • Received : 2021.02.06
  • Accepted : 2021.03.20
  • Published : 2021.03.28

Abstract

There is an increasing interest in manufacturing various electronic devices on a bendable substrate. In this paper, we observed a surface morphology by annealing for 20 minutes at temperatures of 150 ℃, 350 ℃, and 550 ℃, respectively, with samples coated by chromium and aluminum. Data on surfaces are investigated using high-resolution SEM and AFM that can measure roughness up to nm. There is no difference from the sample without heat treatment up to 350 ℃, but the change of crystal grains can be observed at 550 ℃. In the future, for application to the flexible optoelectronic field, additional characteristics such as electrical conductivity and reflectivity will be analyzed and optical devices will be manufactured. In conclusion, we will explore the possibility of applying metal materials to flexible electronic devices.

최근 폴리이미드가 기판으로 사용되어 유기발광다이오드 디스플레이가 구현된 폴더블 스마트폰이 출시되고 있다. 이와 같이 굽힘이 가능한 기판위에 다양한 전자소자를 제작하기 위한 관심이 증가하고 있기 때문에 본 논문에서는 굽힘성이 우수한 127㎛ 두께의 얇은 스테인리스 금속 기판을 이용하여 먼저 크롬을 코팅하고 알루미늄을 형성한 샘플과 알루미늄 구현 후 크롬을 증착한 2가지 샘플을 급속 열처리 장비를 이용하여 150도, 350도, 550도의 온도에서 각각 20분간 어닐링을 진행하여 표면의 형상을 관찰하였다. 고분해능 SEM과 nm까지 거칠기를 측정할 수 있는 AFM을 이용하여 표면에 대한 데이터를 추출하였다. 350도까지는 열처리하지 않은 샘플과 차이가 없지만, 550도에서는 결정립의 변화를 확인할 수 있다. 향후 본 실험 결과는 플렉서블 광전자분야로의 적용을 위해 전기전도도, 반사도와 같은 특성 분석 및 광소자 제작을 통해 금속 소재의 플렉서블 전자소자로의 적용 가능성을 모색할 것이다.

Keywords

References

  1. K. S. Kim et al. (2018). Extremely flat metal films implemented by surface roughness transfer for flexible electronics. RSC Advances, 8, 10883-10888. DOI : 10.1039/c8ra00298c
  2. K. B. Kim. (2016). Effect of Metal Barrier Layer for Flexible Solar Cell Devices on Stainless Steel Substrates. Applied Science and Convergence Technology, 26(1), 16-19. DOI : 10.5757/ASCT.2017.26.1.16
  3. R. S. Howell, M. Stewart, S. V. Kmik, S. K. Saha & M. K. Hatalis. (2000). Poly-Si thin-film transistors on steel substrates. IEEE Electron Device Letters, 21(2), 70-72. DOI : 10.1109/55.821670
  4. J. K. Jeong et al. (2007). Flexible Full-Color AMOLED on Ultrathin Metal Foil. IEEE Electron Device Letters, 28(5), 389-391. DOI : 10.1109/LED.2007.895449
  5. J. S. Park et al. (2009). Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Applied Physics Letters, 95(10), 013503. DOI : 10.1063/1.3159832
  6. X. G. Gao, L. Lin, Y. Liu & X. Huang. (2015). LTPS TFT Process on Polyimide Substrate for Flexible AMOLED. Journal of Display Technology, 11(8), 666-669. DOI : 10.1109/JDT.2015.2419656
  7. R. Okuda, K. Miyoshi, N. Arai & M. Tomikawa. (2004). Polyimide Coatings for OLED Applications. Journal of Photopolymer Science and Technology, 17(2), 207-213. DOI : 10.2494/photopolymer.17.207
  8. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min. (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075
  9. C. Yi, W. Li, S. Shi, K. He, P. Ma, M. Chen & C. Yang. (2020). High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Solar Energy, 195, 340-354. DOI : 10.1016/j.solener.2019.11.048
  10. H. J. Ni, J. G. Liu, Z. H. Wang & S. Y. Yang. (2015). A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. Journal of Industrial and Engineering Chemistry, 28, 16-27. DOI : 10.1016/j.jiec.2015.03.013
  11. X. Wu et al. (2020). Optically Transparent and Thermal‐Stable Polyimide Films Derived from a Semi-Aliphatic Diamine: Synthesis and Properties. Macromolecular Chemistry and Physics, 221(5), 1900506. DOI : 10.1002/macp.201900506
  12. Z. Wu, G. Yan, J. Lu, G. Zhang & J. Yang. (2019). Thermal Plastic and Optical Transparent Polyimide Derived from Isophorone Diamine and Sulfhydryl Compounds. Industrial & Engineering Chemistry Research, 58(17), 6992-7000. DOI : 10.1021/acs.iecr.9b00674
  13. K. B. Kim. (2020). Rapid Thermal Annealing for Ag Layers on SiO2 Coated Metal Foils. Journal of Convergence for Information Technology, 10(8), 137-143. DOI : 10.22156/CS4SMB.2020.10.08.137
  14. M. J. Kim, K. B. Kim, D. Y. Lee, S. N. Lee & J. M. Lee. (2015). Effects of rapid thermal annealing for E-beam evaporated Ag films on stainless steel substrates. Surface and Coatings Technology, 278, 18-24. DOI : 10.1016/j.surfcoat.2015.07.073
  15. H. Khachatryan, S. N. Lee, K. B. Kim, H. K. Kim & M. J. Kim. (2018). Al thin film: The effect of substrate type on Al film formation and morphology. Journal of Physics and Chemistry of Solids, 122, 109-117. DOI : 10.1016/j.jpcs.2018.06.018
  16. M. J. Kim. (2021). Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials. Journal of Convergence for Information Technology, 11(2), 10-15. DOI : 10.22156/CS4SMB.2021.11.02.010