DOI QR코드

DOI QR Code

Review of Carbon Materials Used in Fuel cell Components

연료 전지 구성요소에 사용되는 탄소 재료에 관한 고찰

  • Jang, Min-Hyeok (Department of Chemical & Biological Engineering, Hanbat University) ;
  • Kang, Yu-Jin (Department of Chemical & Biological Engineering, Hanbat University) ;
  • Jo, Hyung-Kun (Department of Chemical & Biological Engineering, Hanbat University) ;
  • Park, Cho-I (Department of Chemical & Biological Engineering, Hanbat University) ;
  • Sim, Hye-Soo (Department of Chemical & Biological Engineering, Hanbat University) ;
  • Park, Joo-Il (Department of Chemical & Biological Engineering, Hanbat University)
  • 장민혁 (한밭대학교 화학생명공학과) ;
  • 강유진 (한밭대학교 화학생명공학과) ;
  • 조형근 (한밭대학교 화학생명공학과) ;
  • 박초이 (한밭대학교 화학생명공학과) ;
  • 심희수 (한밭대학교 화학생명공학과) ;
  • 박주일 (한밭대학교 화학생명공학과)
  • Received : 2020.12.29
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

As the degree of environmental pollution caused by the use of fossil fuels intensifies, many countries continue to invest in the development of alternative energy. PEMFC, one of the alternative energies, consists of four main components: bipolor plate, electrolyte, gas diffusion layer, and electrode. Among them, bipolor plate, the gas diffusion layer, and electrode are generally manufactured using carbon materials such as carbon black and carbon fiber. These carbon materials are expensive in manufacturing process or have disadvantages such as corrosion, and research is being conducted in many fields to improve this. This paper collects several research results conducted to improve the shortcomings of these three components and examines the trends of PEMFC by grasping what problems have been and how they have improved.

화석 연료 사용으로 인한 각종 환경오염의 정도가 심화됨에 따라 많은 국가에서 대체 에너지 개발을 위한 투자를 계속해서 진행하고 있다. 대체 에너지 중 하나인 PEMFC는 양극판, 전해질, 가스 확산 층, 전극 네 가지의 주요 구성요소로 이루어져 있다. 이 중 양극판, 가스 확산 층, 전극은 보편적으로 카본 블랙, 탄소 섬유 등의 탄소 재료를 사용하여 제조한다. 탄소 재료들은 공정비용이 비싸거나 부식 등의 단점이 존재하는데 이를 개선하기 위해 많은 분야에서 연구가 진행되고 있다. 본 논문은 이 세 가지 구성요소들의 단점을 개선하기 위하여 시행된 여러 연구결과들을 취합하여 과거부터 현재까지의 PEMFC에 어떤 문제점이 있었고 어떻게 개선되어 왔는지를 파악하여 PEMFC 연구 흐름을 파악한다.

Keywords

References

  1. S. K. Heo. (2019). How to activate the hydrogen energy industry. Sejong : KIET
  2. H. Chang & P. Thapa. (2016). A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid. Journal of the Korea Convergence Society, 7(6), 13-21. DOI : 10.15207/JKCS.2016.7.6..013
  3. K. Y. Chung & S. Kim. (2012). Optimization of Fuel Processing Unit of Fuel Cell System using Six-sigma Technique. Journal of Digital Convergence, 10(2), 225-229. DOI : 10.14400/JDPM.2012.10.2..225
  4. J. Bayer, & S. Ergun. (1967). An X-ray Study of carbon blacks produced from coals. Carbon, 5(2), 107-111. DOI : 10.1016/0008-6223(67)90064-4
  5. A. L. Dicks. (2006). The role of carbon in fuel cells. Journal of Power Sources, 156(2), 128-141. DOI : 10.1016/j.jpowsour.2006.02.054
  6. I. Mochida, I. Ito, Y. Korai, H. Fujitsu & K. Takeshita. (1981). Catalytic graphitization of fibrous and particulate carbons. Carbon, 19(6), 457-465. DOI : 10.1016/0008-6223(81)90029-4
  7. Carbot corporation. https://www.cabotcorp.com/solutions/products-plus/specialty-carbon-blacks.
  8. Lion Specialty Chemicals. Co., LTD. https://www.lion-specialty-chem.co.jp/en/product/carbon/carbon01.htm
  9. Denka Korea Co., Ltd. http://www.denka.co.kr/?page_id=725
  10. Tokai Carbon Co., LTD. https://www.tokaicarbon.co.jp/en/products/carbon_b/
  11. ASAHI CARBON Co., LTD. https://www.asahicarbon.co.jp/global_site/product/technology/index.html
  12. Orion ENGINEERED CARBONS. https://www.orioncarbons.com/specialty_carbon_blacks
  13. Phillips Carbon Black Limited. https://www.pcblltd.com/specialty-black/
  14. Himadri. https://www.himadri.com/products
  15. C. S. Oh. [2004]. Carbon material for electrode catalyst of polymer electrolyte fuel cell. Seoul : RESEAT
  16. H. J. kim, H. N. Lim, H. M. Oh, J. E. Ahn, H. S. Chei & H. N. Lee. (2011). Application of Fuel cell Catalysts and Low Pollution of Surface Treatment by Conductive Carbon Powder. Applied Chemistry, 15(2), 141-144.
  17. J. I. Lee. (2007). Review of Activated Carbon. Junrado : Jeollanam-do Institute of Health and Enviroment
  18. M. Kwiatkowski & E. Broniek. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Clloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 443-453. DOI : 10.1016/j.colsurfa.2017.06.028
  19. S. Ijima. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. DOI : 10.1038/354056a0
  20. CNT Materials & Properties. (2019). Seoul : Korea University Nanoelectronics Laboratory.
  21. K. B. Kim, J P. Lee, M. J. Kim & Y. S. Min. (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156.CS4SMB.2019.9.3.075 https://doi.org/10.22156.CS4SMB.2019.9.3.075
  22. M. K. Seo & S. J. Park. (2010). Manufactruing Method of Carbon Fibers and Their Application Fields. Polymer Science and Technology, 21(2), 130-140.
  23. J. WANG, J. SUN, R. TIAN & J. XU. (2006). Plain carbon steel bipolar plates for PEMFC. Rare Metals, 25(6), 235-239. DOI : 10.1016/S1001-0521(07)60080-1
  24. R. Dweiri & J. Sahari. (2007) Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). Journal of Power Sources, 171(2), 424-432. DOI :10.1016/j.jpowsour.2007.05.106
  25. I. U. Hwang et al. (2008). Bipolar plate made of carbon fiber epoxy composite for polymer electrolyte membrane fuel cells. Journal of Power Sources, 184(1), 90-94. DOI : 10.1016/j.jpowsour.2008.05.088
  26. Y. Show & K. Takahashi. (2009). Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene(PTFE) composite film for proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 190(2), 322-325. DOI : 10.1016/j.jpowsour.2009.01.027
  27. M. M. Larijani, M. Yari, A. Afshar, M. Jafarian & M. Eshghabadi. (2011). A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs. Journal of Alloys and Compounds, 509(27), 7400-7404. DOI : 10.1016/j.jallcom.2011.04.044
  28. K. H. Kim, J. W. Lim, M. K. Kim & D. G. Lee. (2013). Development of carbon fabric/graphite hybrid bipolar plate for PEMFC. Composite Structures, 98, 103-110. DOI : 10.1016/j.compstruct.2012.10.043
  29. M. K. Kim, J. W. Lim, K. H. Kim & D. G. Lee. (2013). Bipolar plates made of carbon fabric/phenolic composite reinforced with carbon black for PEMFC. Composite Structures, 96, 569-575. DOI : 10.1016/j.compstruct.2012.09.017
  30. M. K. Kim, J. W. Lim & D. G. Lee. (2015). Surface modification of carbon fiber phenolic bipolar plate for the HT-PEMFC with nano-carbon black and carbon felts. Composite Structures, 119, 630-637. DOI : 10.1016/j.compstruct.2014.09.010
  31. J. W. Lim, M. K. Kim, Y. H. Yu & D. G. Lee. (2014). Development of carbon/PEEK composite bipolar plates with nano-conductive particles for High-Temperature PEM fuel cells (HT-PEMFCs). Composite Structures, 118, 519-527. DOI : 10.1016/j.compstruct.2014.08.011
  32. H. E. Lee, S. H. Han, S. A. Song & S. S. Kim. (2015) Novel fabrication process for carbon fiber composite bipolar plates using sol gel and the double percolation effect for PEMFC. Composite Structures, 134, 44-51. DOI : 10.1016/j.compstruct.2015.08.037
  33. H. E. Lee, Y. S. Chung & S. S. Kim. (2017). Feasibility study on carbon - felt - reinforced thermoplastic composite materials for PEMFC bipolar plates. Composite Structures, 180, 378-385. DOI : 10.1016/j.compstruct.2017.08.037
  34. U. K. Chanda, A. Behera, S. Roy & S. Pati. (2018). Evaluation of Ni-Cr-P coatings electrodeposited on low carbon steel bipolar plates for polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 43(52), 23430-23440. DOI : 10.1016/j.ijhydene.2018.10.218
  35. O. A. Alo, I. O. Otunniyi, H. Pienaar & E. R. Sadiku. (2020). Electrical and mechanical properties of polypropylene/epoxy blend-graphite/carbon black composite for proton exchange membrane fuel cell bipolar plate. materialstoday : PROCEEDINGS. DOI : 10.1016/j.matpr.2020.03.642
  36. S. Witpathomwong, M. Okhawilai, C. Jubsilp, P. Karagiannidis & S. Rimdusit. (2020). Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. International Journal of Hydrogen Energy, 45(55), 30898-30910. DOI : 10.1016/j.ijhydene.2020.08.006
  37. D. Y. Lee, J. W. Lim, S. H. Nam, I. B. Choi & D. G. Lee. (2015). Gasket - integrated carbon/ silicone elastomer composite bipolar plate for high-temperature PEMFC. Composite Structures, 128, 284-290. DOI : 10.1016/j.compstruct.2015.03.063
  38. D. Y. Lee & D. G. Lee. (2016). Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Journal of Power Sources, 327, 119-126. DOI : 10.1016/j.jpowsour.2016.07.045
  39. J. Chen, T. Matsuura & M. Hori. (2004). Novel gas diffusion layer with water management function for PEMFC. Journal of Power Sources, 131(1-2), 155-161. DOI : 10.1016/j.jpowsour.2004.01.007
  40. C. J. Tseng & S. K. Lo. (2010). Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Conversion and Management, 51(4), 677-684. DOI : 10.1016/j.enconman.2009.11.011
  41. C. H. Hung, C. H. Chiu, S. P. Wang, I. L. Chiang & H. Yang. (2012) Ultra thin gas diffusion layer development for PEMFC. International Journal of Hydrogen Energy, 37(17), 12805-12812. DOI : doi.org/10.1016/j.ijhydene.2012.05.110
  42. J. Lee, J. Hinebaugh & A. Bazylak. (2013). Synchrotron X-ray radiographic investigations of liquid water transport behavior in a PEMFC with MPL-coated GDLs. Journal of Power Sources, 227, 123-130. DOI : 10.1016/j.jpowsour.2012.11.006
  43. T. Chen, S. Liu, J. Zhang & M. Tang. (2019). Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC. International Journal of Heat and Mass Transfer, 128, 1168-1174. DOI : 10.1016/j.ijheatmasstransfer.2018.09.0 97
  44. O. Delikaya, N. Bevilacqua, L. Eifert, U.Kunz, R. Zeis & C. Roth. (2020). Porous electrospun carbon nanofibers network as an integrated electrode@gas diffusion layer for high temperature polymer electrolyte membrane fuel cells. Electrochimica Acta, 345, 136192. DOI : 10.1016/j.electacta.2020.136192
  45. Z. Zhang, P. He, Y. J. Dai, P. H. Jin & W. Q. Tao. (2020). Study of the mechanical behavior of paper-type GDL in PEMFC based on microstructure morphology. International Journal of Hydrogen Energy, 45(53), 29379-29394. DOI : 10.1016/j.ijhydene.2020.07.240
  46. P. A. Chuang, M. A. Rahman, F. Mojica, D. S. Hussey, D. L. Jacobson & J. M. LaManna. (2020). The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell. Journal of Power Sources, 480, 229121. DOI : 10.1016/j.jpowsour.2020.229121
  47. G. G. Park et al. (2006). Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs. Journal of Power Souerces, 163(1), 113-118. DOI : 10.1016/j.jpowsour.2005.11.103
  48. K. S. Eom et al. (2013). Optimization of GDLs for high-performance PEMFC employing stainless steel bipolar plates. International Journal of Hydrogen Energy, 38(14), 6249-6260. DOI : 10.1016/j.ijhydene.2012.12.061
  49. S. Hou et al. (2020). Enhanced low-humidity performance in a proton exchange membrane fuel cell by developing a novel hydrophilic gas diffusion layer. International Journal of Hydrogen Energy, 45(1), 937-944.DOI : 10.1016/j.ijhydene.2019.10.160
  50. X. Zhang, Y. Yang, X. Zhang & H. Liu. (2020). Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources, 449, 227580. DOI : 10.1016/j.jpowsour.2019.227580
  51. D. H. Jeon. (2020). Effect of gas diffusion layer thickness on liquid water transport characteristics in polymer electrolyte membrane fuel cells. Journal of power Sources, 475, 228578. DOI : 10.1016/j.jpowsour.2020.228578
  52. G. H. Kim, D. S. Kim, J. Y. Kim, H. Kim & T. H. Park. (2020). Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells. Journal of Industrial and Engineering Chemistry, 91, 311-316. DOI : 10.1016/j.jiec.2020.08.014
  53. S. Shahgaldi & J. Hamelin. (2015). Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 94, 705-728. DOI : 10.1016/j.carbon.2015.07.055
  54. F. Yuan, H. K. Yu & H. J. Ryua. (2004) Preparation and characterization of carbon nanofibers as catalyst support material for PEMFC. Electrochimica Acta, 50(2-3), 685-691. DOI : 10.1016/j.electacta.2004.01.106
  55. E. P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi & P. Spinelli. (2008). Platinum catalyst supported on mesoporous carbon for PEMFC. International Journal of Hydrogen Energy, 33(12), 3142-1345. DOI : 10.1016/j.ijhydene.2008.03.045
  56. R. Rego, M. C. Oliveira, F. Alcaide & G. Alvarez. (2012). Development of a carbon paper-supported Pd catalyst for PEMFC application. Internatinoal Journal of Hydrogen Energy, 37(8), 7192-7199. DOI : 10.1016/j.ijhydene.2011.12.074
  57. Y. S. Yun, D. Y. Kim, H. H. Park, Y. S. Tak & H. J. Jin. (2012). 3D hierarchical porous carbons containing numerous nitrogen atoms as catalyst supports for PEMFCs. Synthetic Metals, 162(24), 2337-2341. DOI : 10.1016/j.synthmet.2012.11.005
  58. H. Wu, D. Wexler & H. Liu. (2012). Pt-Ni/C catalysts using different carbon supports for the cathode of the proton exchange membrane fuel cell (PEMFC). Materials Chemistry and Physics, 136(2-3), 845-849. DOI :10.1016/j.matchemphys.2012.08.007
  59. T. Suzuki, S. Tsushima & S. Hirai. (2013). Fabrication and performance evaluation of structurally-controlled PEMFC catalyst layers by blending platinum-supported and stand-alone carbon black. Journal of Power Sources, 233, 269-276. DOI : 10.1016/j.jpowsour.2013.01.092
  60. Y. Wang, J. Jin, S. Yang, G. Li & J. Qiao. (2015). Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochimica Acta, 177, 181-189. DOI : 10.1016/j.electacta.2015.01.134
  61. S. Shahgaldi & J. Hamelin. (2015). Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 94, 705-728. DOI : 10.1016/j.carbon.2015.07.055
  62. A. Marinoiu et al. (2015). Graphene-based Materials Used as the Catalyst Support for PEMFC Applications. materialstoday : PROCEEDINGS, 2(6), 3797-3805. DOI : 10.1016/j.matpr.2015.08.013
  63. F. Labbe et al. (2018). Tin dioxide coated carbon materials as an alternative catalyst support for PEMFCs: Impacts of the intrinsic carbon properties and the synthesis parameters on the coating characteristics, Microporous and Mesoporous Materials, 271, 1-15. DOI : 10.1016/j.micromeso.2018.05.019
  64. R. A. MoghadamEsfahani, S. K. Vankova, E. B. Easton, I. I. Ebralidze & S. Specchia. (2020). A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC. Renewable Energy, 154, 913-924. DOI : 10.1016/j.renene.2020.03.029