DOI QR코드

DOI QR Code

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning

신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어

  • Received : 2020.10.28
  • Accepted : 2020.11.29
  • Published : 2021.04.30

Abstract

With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

최근 딥러닝은 하드웨어 성능이 향상됨에 따라 자연어 처리, 영상 인식 등의 다양한 기술에 접목되어 활용되고 있다. 이러한 기술들을 활용해 지능형 교통 시스템(ITS), 스마트홈, 헬스케어 등의 산업분야에서 데이터를 분석하여 고속도로 속도위반 차량 검출, 에너지 사용량 제어, 응급상황 등과 같은 고품질의 서비스를 제공하며, 고품질의 서비스를 제공하기 위해서는 정확도가 향상된 딥러닝 모델이 적용되어야 한다. 이를 위해 서비스 환경의 데이터를 분석하기 위한 딥러닝 모델을 개발할 때, 개발자는 신뢰성이 검증된 최신의 딥러닝 모델을 적용할 수 있어야 한다. 이는 개발자가 참조하는 딥러닝 모델에 적용된 학습 데이터셋의 정확도를 측정하여 검증할 수 있다. 이러한 검증을 위해서 개발자는 학습 데이터셋, 딥러닝의 계층구조 및 개발 환경 등과 같은 내용을 포함하는 딥러닝 모델을 문서화하여 적용하기 위한 구조적인 정보가 필요하다. 본 논문에서는 신뢰성있는 딥러닝 기반 데이터 분석 모델을 참조하기 위한 딥러닝 기술 언어를 제안한다. 제안하는 기술 언어는 신뢰성 있는 딥러닝 모델을 개발하는데 필요한 학습데이터셋, 개발 환경 및 설정 등의 정보와 더불어 딥러닝 모델의 계층구조를 표현할 수 있다. 제안하는 딥러닝 기술 언어를 이용하여 개발자는 지능형 교통 시스템에서 참조하는 분석 모델의 정확도를 검증할 수 있다. 실험에서는 제안하는 언어의 유효성을 검증하기 위해, 번호판 인식 모델을 중심으로 딥러닝 기술 문서의 적용과정을 보인다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(No.2019R1A2C1007861).

References

  1. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol.521, No.7553, pp.436-444, 2015. https://doi.org/10.1038/nature14539
  2. T. Young, D. Hazarika, S. Poria, and E. Cambria, "Recent trends in deep learning based natural language processing," IEEE Computational intelligenCe magazine, Vol.13, No.3, pp.55-75, 2018. https://doi.org/10.1109/mci.2018.2840738
  3. M. Y. Liu et al., "Few-shot unsupervised image-to-image translation," The IEEE International Conference on Computer Vision (ICCV), pp.10551-10560, 2019.
  4. K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask r-cnn," Proceedings of the IEEE International Conference on Computer Vision, pp. 2961-2969, 2017.
  5. P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1125-1134, 2017.
  6. S. J. Choi, E. W. Kim, and S. H. Oh, "Human behavior prediction for smart homes using deep learning," 2013 IEEE RO-MAN, IEEE, pp.173-179, 2013.
  7. S. U. Amin, M. S. Hossain, G. Muhammad, M. Alhussein, and M. A. Rahman, "Cognitive smart healthcare for pathology detection and monitoring," IEEE Access 7, pp. 10745-10753, 2019. https://doi.org/10.1109/access.2019.2891390
  8. C. N. Anagnostopoulos, I. Anagnostopoulos, V. Loumos, and E. Kayafas, "A license plate-recognition algorithm for intelligent transportation system applications," IEEE Transactions on Intelligent Transportation Systems, Vol.7, No.3, pp.377-392, 2006.
  9. S. H. An, B. H. Lee, and D. R. Shin, "A survey of intelligent transportation systems," 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks, IEEE, pp.332-337, 2011.
  10. R. Akhawaji, M. Sedky, and A. H. Soliman, "Illegal parking detection using Gaussian mixture model and kalman filter," 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), IEEE, pp.840-847, 2020.
  11. J. P. Lin, and M. T. Sun, "A YOLO-based traffic counting system," 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI), IEEE, pp.82-85, 2018.
  12. J. Dahmen, D. J. Cook, X. Wang, and W. Honglei, "Smart secure homes: A survey of smart home technologies that sense, assess, and respond to security threats," Journal of Reliable Intelligent Environments, Vol.3, No.2, pp.83-98, 2017. https://doi.org/10.1007/s40860-017-0035-0
  13. D. Popa, F. Pop, C. Serbanescu, and A. Castiglione, "Deep learning model for home automation and energy reduction in a smart home environment platform," Neural Computing and Applications, Vol.31, No.5, pp.1317-1337, 2019. https://doi.org/10.1007/s00521-018-3724-6
  14. IBM AI research, "Trusting AI," IBM, accessed September, 11, 2020 [Internet], https://www.research.ibm.com/artificial-intelligence/trusted-ai/.
  15. D. Sirohi, N. Kumar, and P. S. Rana, "Convolutional neural networks for 5G-enabled Intelligent Transportation System: A systematic review," Computer Communications, Vol.153, pp.459-498, 2020. https://doi.org/10.1016/j.comcom.2020.01.058
  16. H. Hendry and R. C. Chen, "Automatic license plate recognition via sliding-window darknet-YOLO deep learning," Image and Vision Computing, Vol.87, pp.47-56, 2019.
  17. Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, "LSTM network: A deep learning approach for short-term traffic forecast," IET Intelligent Transport Systems, Vol.11, No.2, pp.68-75, 2017. https://doi.org/10.1049/iet-its.2016.0208
  18. M. Vartak and S. Madden, "MODELDB: Opportunities and challenges in managing machine learning models," IEEE Data Eng. Bull.(풀네임표기), Vol.41, No.4, pp.16-25, 2018.
  19. G. C. Publio et al., "ML-Schema: Exposing the semantics of machine learning with schemas and ontologies," arXiv, arXiv:1807.05351, 2018.
  20. R. Souza et al., "Provenance data in the machine learning lifecycle in computational science and engineering," 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS), IEEE, pp.1-10, 2019.
  21. World Wide Web Consortium, "PROV-DM: the PROV data model," W3C, April 30, 2013, accessed December 7, 2020 [Internet] https://www.w3.org/TR/prov-dm/.
  22. T. Lebo et al., "PROV-O: The PROV Ontology," W3C recommendation 30, 2013.
  23. M. Moreno et al., "Managing machine learning workflow components," 2020 IEEE 14th International Conference on Semantic Computing (ICSC), IEEE, pp.25-30, 2020.
  24. A. Seeliger, M. Pfaff, and H. Krcmar, "Semantic web technologies for explainable machine learning models: A literature review," PROFILES/SEMEX@ ISWC, pp.30-45, 2019.
  25. D. Gunning, "Explainable artificial intelligence (XAI)," Defense Advanced Research Projects Agency (DARPA), accessed June 16, 2020.
  26. E. Tjoa and C. Guan, "A survey on explainable artificial intelligence (XAI): Toward medical XAI," IEEE Transactions on Neural Networks and Learning Systems, 2020.
  27. W. C. Tan, "Research problems in data provenance," IEEE Data Engineering Bulletin, Vol.27, No.4, pp.45-52, 2004.
  28. N. Baracaldo, B. Chen, H. Ludwig, and J. A. Safavi, "Mitigating poisoning attacks on machine learning models: A data provenance based approach," Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp.103-110, 2017.
  29. M. Earl, "Using neural networks to build an automatic number plate recognition system," GitHub, August 30, accessed June 30, 2020 [Internet], https://github.com/matthewearl/deep-anpr.
  30. M. D. Wilkinson et al., "The FAIR Guiding Principles for scientific data management and stewardship," Scientific Data, Vol.3, No.1, pp.1-9, 2016.