DOI QR코드

DOI QR Code

석영 기판 위에 증착된 NaNbO3:Eu3+ 형광체 박막의 특성에 열처리 온도가 미치는 영향

Effect of Annealing Temperature on the Properties of NaNbO3:Eu3+ Phosphor Thin Films Deposited on Quartz Substrates

  • Cho, Shinho (Department of Materials Science and Engineering, Silla University)
  • 투고 : 2021.04.14
  • 심사 : 2021.04.27
  • 발행 : 2021.04.30

초록

NaNbO3:Eu3+ phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering at a growth temperature of 100 ℃, with subsequent annealing at temperatures of 800, 900, and 1000 ℃. The effects of annealing temperature on the structural, morphological, and optical properties of the thin films were investigated. The NaNbO3:Eu3+ sputtering target was synthesized by a solid-state reaction of raw materials Na2CO3, Nb2O5, and Eu2O3. The X-ray diffraction patterns exhibited that the thin films had two mixed phases of NaNbO3 and Eu2O3. Surface morphologies were investigated by using field emission-scanning electron microscopy and indicated that the grains of the thin film annealed at 1000 ℃ showed irregular shapes with an average size of approximately 300 nm. The excitation spectra of Eu3+-doped NaNbO3 thin film consisted of a strong charge transfer band centered at 304 nm in the range of 240-350 nm and two weak peaks at 395 and 462 nm, respectively, resulting from the 7F05L6 and 7F05H2 transitions of Eu3+ ions. The emission spectra under excitation at 304 nm exhibited an intense red band centered at 614 nm and two weak bands at 592 and 681 nm. As the annealing temperature increased from 800 ℃ to 1000 ℃, the intensities of all the emission bands and the band gap energies gradually increased. These results indicate that the higher annealing temperature enhance the luminescent properties of NaNbO3:Eu3+ thin films.

키워드

과제정보

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1I1A3A04037942).

참고문헌

  1. T. Koide, M. Ito, T. Kawai, Y. Matsushima, An Inorganic Electroluminescent Device Using Calcium Phosphate Doped with Eu3+ as the Luminescent Layer, Mater. Sci. Eng. B, 178 (2013) 306-310. https://doi.org/10.1016/j.mseb.2012.12.008
  2. J. Fan, C. Yu, C. Qian, X. Fan, G. Zhang, Thermal/luminescence Characterization and Degradation Mechanism Analysis on Phosphor-Converted White LED Chip Scale Packages, Microelectron. Reliab. 74 (2017) 179-185. https://doi.org/10.1016/j.microrel.2017.04.012
  3. Z. Wang, X. Zhao, Z. Guo, P. Miao, X. Gong, Carbon Dots Based Nanocomposite Thin Film for Highly Efficient Luminescent Solar Concentrators, Org. Electron. 62 (2018) 284-289. https://doi.org/10.1016/j.orgel.2018.08.020
  4. D. Alami, Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study, Environ. Eng. Res. 18(4) (2013) 211-219. https://doi.org/10.4491/eer.2013.18.4.211
  5. R. Krishnan, H. C. Swart, J. Thirumalai, P. Kumar, Depth Profiling and Photometric Characteristics of Pr3+ Doped BaMoO4 Thin Phosphor Films Grown Using (266 nm Nd-YAG laser) Pulsed Laser Deposition, Appl. Surf. Sci. 488 (2019) 783-790.
  6. A. Boukerika, L. Guerbous, H. Chelef, L. Benharrat, Preparation and Characterization of Bright High Quality YAG:Eu3+ Thin Films Grown by Sol-gel Dip-coating Technique, Thin Solid Films, 683 (2019) 74-81.
  7. Y. Wang, L. Zhang, R. Cao, Q. Miao, J. Qiu, Structure and Properties of CaNb2O6:Sm3+ Thin Films by Pulsed Laser Deposition, Appl. Phys. A. 115 (2014) 1365-1370.
  8. S. Cho, Properties of Nitrogen and Aluminium-codoped ZnO Thin Films Grown with Different Nitrogen Flow Ratios for Solar Cell Applications, Curr. Appl. Phys. 10 (2010) S443-S446. https://doi.org/10.1016/j.cap.2010.01.007
  9. W. H. Chao, R. J. Wu, T. B. Wu, Structural and Luminescent Properties of YAG:Ce Thin Film Phosphor, J. Alloys Compd. 506(1) (2010) 98-102.
  10. Sk. F. Ahmed, M. W. Moon, K. R. Lee, Effect of Silver Doping on Optical Property of Diamond like Carbon Films, Thin Solid Films, 517 (2009) 4035-4038. https://doi.org/10.1016/j.tsf.2009.01.135
  11. A. Bouhdjer, A. Attaf, H. Saidi, H. Bendjedidi, Y. Benkhetta, I. Bouhaf, Correlation Between the Strucutural, Morphological, Optical, and Electrical Properties of In2O3 Thin Films Obtained by an Ultrasonic Spray Process, J. Semicond. 36(8) (2015) 082002. https://doi.org/10.1088/1674-4926/36/8/082002
  12. L. Y. Zhou, J. S. Wei, L. H. Yi, F. Z. Gong, J. L. Huang, W. Wang, A Promising Red Phosphor MgMoO4:Eu3+ for White Light Emitting Diodes, Mater. Res. Bull. 44 (2009) 1411-1414. https://doi.org/10.1016/j.materresbull.2008.11.019
  13. Y. Li, X. Liu, Energy Transfer and Luminescence Properties of Ba2CaMoO6:Eu3+ Phosphors Prepared by Sol-gel Method, Opt. Mater. 42 (2015) 303-308. https://doi.org/10.1016/j.optmat.2015.01.018
  14. Z. Hao, J. Zhang, X. Zhang, X. Wang, CaSc2O4:Eu3+: A Tunable Full-Color Emitting Phosphor for White Light Emitting Diodes, Opt. Mater. 33 (2011) 355-358. https://doi.org/10.1016/j.optmat.2010.09.035
  15. K. Binnemans, Interpretation of Europium(III) Spectra, Coord. Chem. Rev. 295 (2015) 1-45. https://doi.org/10.1016/j.ccr.2015.02.015
  16. R. Vijayakumar, K. Maheshvaran, V. Sudarsan, K. Marimuthu, Concentration Dependent Luminescence Studies on Eu3+ Doped Telluro Fluoroborate Glasses, J. Lumin. 154 (2014) 160-167. https://doi.org/10.1016/j.jlumin.2014.04.022