DOI QR코드

DOI QR Code

A Study on the Aesthetic Elements for Building Integrated Photovoltaics(BIPV) Design

건물일체형태양광(BIPV) 통합설계를 위한 심미적 디자인 요소에 관한 연구

  • Received : 2021.03.07
  • Accepted : 2021.05.07
  • Published : 2021.05.30

Abstract

As climate change begins to affect every corner of the world, renewable energy becomes increasingly important. However, although the BIPV system gets more attention with improved efficiency, its aesthetical design integration is still far behind. Therefore, first, this work analyzes the aesthetic design aspects of BIPV integrated design through previous studies and IEA studies. Secondly, 12 elements of BIPV system design aesthetic evaluation are derived. Third, these elements are applied to five selected cases to explore the improvement of aesthetic design elements for BIPV integrated design. In conclusion, the aesthetic elements of BIPV seen through the cases were expressed in an integrated design as an architectural language based on technology. Among them, color, shape, pattern, composition, and harmony were found to be important aesthetic considerations of BIPV integrated design.

Keywords

Acknowledgement

이 성과는 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단(No. NRF-2018R1A2B6005938)과 2020학년도 홍익대학교 학술연구진흥비 지원을 받아 수행된 연구임.

References

  1. Alaa, H., & Gharib, N. (2020). PV Grid-Connected Systems: Performance and Architectural Integration Aspects. In IOP Conference Series: Materials Science and Engineering (Vol. 974, No. 1, p. 012020). IOP Publishing. pp. 11-13.
  2. Archidaily,[Website].(2021,Mar.1).https://www.archdaily.com/641051/nursery-e-in-marburg-opus-architekten
  3. Barbara, V. M. B., & Oudshoff, B. (1999). Literature survey and analysis of non- technical problems for the introduction of building integrated photovoltaic systems (IEA PVPS TASK VII-01; IEA PVPS, p 54). International energy angency.
  4. Basnet, A. (2012). Architectural integration of photovoltaic and solar thermal collector systems into buildings (Master's thesis, Norges teknisk-naturvitenskapelige universitet, Fakultet for arkitektur og billedkunst, Institutt for byggekunst, historie og teknologi). pp. 1-2.
  5. Extex-solar,[Website].(2021,Mar.1).https://www.ertex-solar.at/produkte/referenzen/
  6. Farkas, K., Frontini, F., Maturi, L., Munari Probst, M. C., Roecker, C., & Scognamiglio, A. (2013). IEA SHC Task 41: Solar Energy Systems in Architecture-integration Criteria and Guidelines {R}. MCM Probst, C. Roecker (editors).
  7. Fergle, R. (2019). Building-Integrated Solar Technology: Architectural Design with Photovoltaics and Solar Thermal Energy: Roland Krippner (ed.) Detail Business Information GmbH, 2017 140 pages $84.00 USD. Technology| Architecture+ Design, 3(1).
  8. Florensa, R. S. I., & Cueva, R. L. (2012). Architectural Integration of Solar Cells. In Practical Handbook of Photovoltaics. Academic Press. pp. 917-941
  9. Garcia, L., Hernandez, J., & Ayuga, F. (2006). Analysis of the materials and exterior texture of agro-industrial buildings: a photo-analytical approach to landscape integration. Landscape and Urban Planning, 74(2), pp. 110-124. https://doi.org/10.1016/j.landurbplan.2004.10.007
  10. Han, S. H., & Hong, J. I. (2019). [KAIA]. Construction of a semi-permeable solar cell-applied architectural cladding module for the aesthetic of urban architecture, (1), pp. 129-170.
  11. Hermannsdorfer, I., & Rub, C. (2005). Solar design.
  12. IEA PVPS Task 15. Subtask C - International framework for BIPV specifications Report IEA-PVPS T15-04. (2018). IEA. pp. 4-6.
  13. Jo, H. S., & Han, S. H. (2017). An Evaluation System for Architectural Aesthetics Applied with Building Integrated Solar Cells. KIEAE Journal, 17(6), pp. 199-206. https://doi.org/10.12813/kieae.2017.17.6.199
  14. KEA,[WEB].(2006. 06. 01). KEA News letter. https://www.kea.kr/front/bbs/board.php?ID=news02&UID=1320
  15. Kuhn, T. E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., & Neuhaus, D. H. (2020). Review of Technological Design Options for Building Integrated Photovoltaics (BIPV). Energy and Buildings, 110381. pp. 14-19.
  16. Maturi, L., & Adami, J. (2017). Fotovoltaico e architettura in Trentino-Alto Adige: la bellezza dell'energia solare= Fotovoltaik und Architektur in Trentino-Sudtirol: die Schonheit der Energieerzeugung.
  17. Oh, H. I., Kim, D. S., & Yoon, H. K. (2016). Building Facade Design Research to Accept Building Integrated Photovoltaic System. Journal of the Architectural Institute of Korea, 36(1). p. 177.
  18. Pelle, M., Lucchi, E., Maturi, L., Astigarraga, A., & Causone, F. (2020). Coloured BIPV Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies, 13(17), p. 4.
  19. Prasad, D., Snow, M., & Watt, M. (2005). Best Practice Guidelines for Solar Power Building Projects in Australia. Renewable Energy Industry Development (REID 7) Program, The University of New South Wales (UNSW). p. 18.
  20. Sanchez-Pantoja, N., Vidal, R., & Pastor, M. C. (2018). Aesthetic impact of solar energy systems. Renewable and Sustainable Energy Reviews, 98, pp. 227-238. https://doi.org/10.1016/j.rser.2018.09.021
  21. Schoen, T., Prasad, D., Ruoss, D., Eiffert, P., & Sorensen, H. (2001, 10). Task 7 of the IEA PV power systems program-achievements and outlook. In Proceedings of the 17th European Photovoltaic Solar Conference. p. 2.
  22. Schoen, T., Van Schalkwijk, M., Prasad, D., Toggweiler, P., & Sorensen, H. (1997). Task VII of the IEA PV Power Systems Program: PV in the Built environment-A strategy. Proc. 14th EUPVSEC, Barce lona, pp. 359 - 364.
  23. Solarchitecture, [Website]. (2021, Mar. 1). https://solarchitecture.ch/timeline/umwelt-arena/
  24. Tolli, M., Recanatesi, F., Piccinno, M., & Leone, A. (2016). The assessment of aesthetic and perceptual aspects within environmental impact assessment of renewable energy projects in Italy. Environmental Impact Assessment Review, 57, pp. 10-17. https://doi.org/10.1016/j.eiar.2015.10.005
  25. Wall, M., Probst, M. C. M., Roecker, C., Dubois, M. C., Horvat, M., Jorgensen, O. B., & Kappel, K. (2012). Achieving solar energy in architecture-IEA SHC Task 41. Energy Procedia, 30, p. 1251.
  26. Weller, B., Hemmerle, C., Jakubetz, S., & Unnewehr, S. (2010). Photovoltaics. Detail, Munich. pp. 41-47.
  27. Weller, B., Hemmerle, C., Jakubetz, S., & Unnewehr, S. (2012). Detail Practice: Photovoltaics: Technology, Architecture, Installation. Walter de Gruyter. pp. 40-41.
  28. Yoon, J. H. (2014). The State of the Art in BIPV Technology. J. KIEEME, 27(1), pp. 5-6.
  29. Yoon, J. H., & Lee, B. Y., (2013). Status of BIPV support system in Korea and classification of BIPV by installation type (plan). Journal of the KGBC 0406 14(1). pp. 34-36.