DOI QR코드

DOI QR Code

Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries

  • Seong, Min Ji (Department of Chemistry, Research Institute of Basic Sciences, College of Natural Science, Incheon National University) ;
  • Yim, Taeeun (Department of Chemistry, Research Institute of Basic Sciences, College of Natural Science, Incheon National University)
  • Received : 2020.10.05
  • Accepted : 2021.01.26
  • Published : 2021.05.28

Abstract

The high theoretical specific capacity of lithium-sulfur (Li-S) batteries makes them a more promising energy storage system than conventional lithium-ion batteries (LIBs). However, the slow kinetics of the electrochemical conversion reaction seriously hinders the utilization of Li-S as an active battery material and has prevented the successful application of Li-S cells. Therefore, exploration of alternatives that can overcome the sluggish electrochemical reaction is necessary to increase the performance of Li-S batteries. In this work, an ionic liquid (IL) is proposed as a functional additive to promote the electrochemical reactivity of the Li-S cell. The sluggish electrochemical reaction is mainly caused by precipitation of low-order polysulfide (l-PS) onto the positive electrode, so the IL is adopted as a solubilizer to remove the precipitated l-PS from the positive electrode to promote additional electron transfer reactions. The ILs effectively dissolve l-PS and greatly improve the electrochemical performance by allowing greater utilization of l-PS, which results in a higher initial specific capacity, together with a moderate retention rate. The results presented here confirmed that the use of an IL as an additive is quite effective at enhancing the overall performance of the Li-S cell and this understanding will enable the construction of highly efficient Li-S batteries.

Keywords

Acknowledgement

This work was supported by Incheon National University Research Grant in 2020.

References

  1. H. S. Kim, T. -G. Jeong, Y. -T. Kim, J. Electrochem. Sci. Technol., 2016, 7(3), 228-233. https://doi.org/10.5229/JECST.2016.7.3.228
  2. X. Zhao, G. Cheruvally, C. Kim, K. -K. Cho, H. -J. Ahn, K. -W. Kim, J. -H. Ahn, J. Electrochem. Sci. Technol., 2016, 7(2), 97-114. https://doi.org/10.5229/JECST.2016.7.2.97
  3. R. Yan, M. Oschatz, F. Wu, Carbon., 2020, 161, 162-168. https://doi.org/10.1016/j.carbon.2020.01.046
  4. M. Rana, S. A. Ahad, M. Li, B. Luo, L. Wang, I. Gentle, R. Knibbe, Energy Storage Mater., 2019, 18, 289-310. https://doi.org/10.1016/j.ensm.2018.12.024
  5. L. Wang, Z. Y. Wang, J. F. Wu, G. R. Li, S. Liu, X. P. Gao, Nano Energy., 2020, 77, 105173. https://doi.org/10.1016/j.nanoen.2020.105173
  6. J. W. Park, J. Kang, J. Y. Koh, A. Caron, S. Kim, Y. Jung, J. Electrochem. Sci. Technol., 2020, 11(1), 33-40. https://doi.org/10.33961/jecst.2019.00423
  7. M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu, H. Yu, M. Wu, Z. Li, D. Shao, C. Miao, G. Chen, H. Shu, Y. Pei, X. Wang, Chem. Eng. J., 2020, 385, 123905. https://doi.org/10.1016/j.cej.2019.123905
  8. J. L. Cheong, A. A. AbdelHamid, J. Y. Ying, Nano Energy., 2019, 66, 104114. https://doi.org/10.1016/j.nanoen.2019.104114
  9. T. Li, X. Bai, U. Gulzar, Y. -J. Bai, C. Capiglia, W. Deng, X. Zhou, Z. Liu, Z. Feng, R. P. Zaccaria, Adv. Funct. Mater., 2019, 29(32), 1901730. https://doi.org/10.1002/adfm.201901730
  10. S. Lin, M. K. Shafique, Z. Cai, J. Xiao, Y. Chen, Y. Wang, X. Hu, ACS Nano., 2019, 13(11), 13037-13046. https://doi.org/10.1021/acsnano.9b05718
  11. S. Xiong, K. Xie, Y. Diao, X. Hong, Electrochim. Acta., 2012, 83, 78-86. https://doi.org/10.1016/j.electacta.2012.07.118
  12. J. K. Kang, T. J. Kim, J. W. Park, Y. Jung, The Bull. Korean Chem. Soc., 2019, 40(6), 566-571. https://doi.org/10.1002/bkcs.11736
  13. T. Mukra, Y. Horowitz, I. Shekhtman, M. Goor, S. Drvaric Talian, L. Burstein, J. Kasnatscheew, P. Meister, M. Grunebaum, M. Winter, H. D. Wiemhofer, D. Golodnitsky, E. Peled, Electrochim. Acta., 2019, 307, 76-82. https://doi.org/10.1016/j.electacta.2019.03.144
  14. J. Shim, T. J. Ko, K. Yoo, J. Ind. Eng. Chem., 2019, 80, 283-291. https://doi.org/10.1016/j.jiec.2019.08.006
  15. S. Duangdangchote, A. Krittayavathananon, N. Phattharasupakun, M. Sawangphruk, ECS Trans., 2020, 97(7), 827. https://doi.org/10.1149/09707.0827ecst
  16. S. S. Zhang, J. Power Sources., 2013, 231, 153-162. https://doi.org/10.1016/j.jpowsour.2012.12.102
  17. J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Nano Energy., 2018, 51, 73-82. https://doi.org/10.1016/j.nanoen.2018.06.046
  18. C. Y. Fan, Y. P. Zheng, X. H. Zhang, Y. H. Shi, S. Y. Liu, H. C. Wang, X. L. Wu, H. Z. Sun, J. P. Zhang, Adv. Energy Mater., 2018, 8(18), 1703638. https://doi.org/10.1002/aenm.201703638
  19. Z. Yuan, H. -J. Peng, T. -Z. Hou, J. Q. Huang, C. -M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett., 2016, 16(1), 519-527. https://doi.org/10.1021/acs.nanolett.5b04166
  20. Z. -L. Xu, J. -K. Kim, K. Kang, Nano Today., 2018, 19, 84-107. https://doi.org/10.1016/j.nantod.2018.02.006
  21. M. Rana, B. Luo, M. R. Kaiser, I. Gentle, R. Knibbe, J. Energy Chem., 2020, 42, 195-209. https://doi.org/10.1016/j.jechem.2019.06.015
  22. S. Menne, R. S. Kuhnel, A. Balducci, Electrochim. Acta., 2013, 90, 641-648. https://doi.org/10.1016/j.electacta.2012.12.042
  23. S. Wilken, S. Xiong, J. Scheers, P. Jacobsson, P. Johansson, J. Power Sources., 2015, 275, 935-942. https://doi.org/10.1016/j.jpowsour.2014.11.071
  24. N. Plylahan, M. Kerner, D. -H. Lim, A. Matic, P. Johansson, Electrochim. Acta., 2016, 216, 24-34. https://doi.org/10.1016/j.electacta.2016.08.025
  25. S. Kim, Y. Jung, S. J. Park, Electrochim. Acta., 2007, 52(6), 2116-2122. https://doi.org/10.1016/j.electacta.2006.08.028
  26. J. H. Shin, E. J. Cairns, J. Power Sources., 2008, 177(2), 537-545. https://doi.org/10.1016/j.jpowsour.2007.11.043
  27. Y. Yan, J. -C. Xie, Y. Zhao, Y. Zhang, N. Cui, C. Li, C. Hao, J. Alloys Compd., 2019, 805, 733-739. https://doi.org/10.1016/j.jallcom.2019.07.143
  28. S. Asha, K. P. Vijayalakshmi, B. K. George, Int. J. Quantum Chem., 2019, 119(22), e26014. https://doi.org/10.1002/qua.26014
  29. W. Zhang, Y. Wang, X. Lan, Y. Huo, Res. Chem. Intermed., 2020, 46(6), 3007-3023. https://doi.org/10.1007/s11164-020-04128-5