DOI QR코드

DOI QR Code

Comparison of Morphological Analysis and DNA Metabarcoding of Crustacean Mesozooplankton in the Yellow Sea

황해 갑각 중형동물플랑크톤의 형태 분석과 DNA 메타바코딩 비교

  • Kim, Garam (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kang, Hyung-Ku (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Choong-Gon (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Jae Ho (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Sung (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
  • 김가람 (한국해양과학기술원 해양생태연구센터) ;
  • 강형구 (한국해양과학기술원 해양생태연구센터) ;
  • 김충곤 (한국해양과학기술원 해양생태연구센터) ;
  • 최재호 (한국해양과학기술원 해양생태연구센터) ;
  • 김성 (한국해양과학기술원 해양생태연구센터)
  • Received : 2021.02.22
  • Accepted : 2021.03.11
  • Published : 2021.03.30

Abstract

Studies on marine zooplankton diversity and ecology are important for understanding marine ecosystem, as well as environmental conservation and fisheries management. DNA metabarcoding is known as a useful tool to reveal and understand diversity among animals, but a comparative evaluation with classical microscopy is still required in order to properly use it for marine zooplankton research. This study compared crustacean mesozooplankton taxa revealed by morphological analysis and metabarcoding of the cytochrome oxidase I (COI). A total of 17 crustacean species were identified by morphological analysis, and 18 species by metabarcoding. Copepods made up the highest proportion of taxa, accounting for more than 50% of the total number of species delineated by both methods. Cladocerans were not found by morphological analysis, whereas amphipods and mysids were not detected by metabarcoding. Unlike morphological analysis, metabarcoding was able to identify decapods down to the species level. There were some discrepancies in copepod species, which could be due to a lack of genetic database, or biases during DNA extraction, amplification, pooling and bioinformatics. Morphological analysis will be useful for ecological studies as it can classify and quantify the life history stages of marine zooplankton that metabarcoding cannot detect. Metabarcoding can be a powerful tool for determining marine zooplankton diversity, if its methods or database are further supplemented.

Keywords

Acknowledgement

현장 조사를 도와주신 온누리호 선장님과 승무원분들께 감사드립니다. 이 연구는 한국해양과학기술원의 연구 과제(PE99913)의 지원으로 수행 되었습니다.

References

  1. Abad D, Albaina A, Aguirre M, Laza-Martinez A, Uriarte I, Iriarte A, Villate F, Estonba A (2016) Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar Biol 163(7):1-13 https://doi.org/10.1007/s00227-015-2782-x
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. P Natl Acad Sci USA 107(22):10120-10124 https://doi.org/10.1073/pnas.0913855107
  4. Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, Albaina A, Lehtiniemi M (2016) Metabarcoding of marine zooplankton: prospects, progress and pitfalls. J Plankton Res 38(3):393-400 https://doi.org/10.1093/plankt/fbw023
  5. Bucklin A, Yeh HD, Questel JM, Richardson DE, Reese B, Copley NJ, Wiebe PH (2019) Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES J Mar Sci 76(4):1162-1176 https://doi.org/10.1093/icesjms/fsz021
  6. Chihara M, Murano M (1997) An illustrated guide to marine plankton in Japan. Tokai University Press, Tokyo, 1574 p
  7. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2016) GenBank. Nucleic Acids Res 44(D1):D67-D72. doi:10.1093/nar/gkv1276
  8. Djurhuus A, Pitz K, Sawaya NA, Rojas-Marquez J, Michaud B, Montes E, Muller-Karger F, Breitbart M (2018) Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol Oceanogr-Meth 16(4):209-221 https://doi.org/10.1002/lom3.10237
  9. Gannon JE, Stemberger RS (1978) Zooplankton (especially crustaceans and rotifers) as indicators of water quality. T Am Microsc Soc 97(1):16-35 https://doi.org/10.2307/3225681
  10. Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome coxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13(5):851-861 https://doi.org/10.1111/1755-0998.12138
  11. Harvey JB, Johnson SB, Fisher JL, Peterson WT, Vrijenhoek RC (2017) Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. J Exp Mar Biol Ecol 487:113-126 https://doi.org/10.1016/j.jembe.2016.12.002
  12. Helle K (2000) Distribution of the copepodite stages of Calanus finmarchicus from Lofoten to the Barents Sea in July 1989. ICES J Mar Sci 57(6):1636-1644 https://doi.org/10.1006/jmsc.2000.0954
  13. Hirai J, Katakura S, Kasai H, Nagai S (2017a) Cryptic zooplankton diversity revealed by a metagenetic approach to monitoring metazoan communities in the coastal waters of the Okhotsk Sea, Northeastern Hokkaido. Front Mar Sci 4:379. doi:10.3389/fmars.2017.00379
  14. Hirai J, Nagai S, Hidaka K (2017b) Evaluation of metagenetic community analysis of planktonic copepods using Illumina MiSeq: comparisons with morphological classification and metagenetic analysis using Roche 454. PloS One 12(7):e0181452. doi:10.1371/journal.pone.0181452
  15. Illumina (2013) 16s metagenomic sequencing library preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf Accesed 31 Oct 2020
  16. Jeong MK, Suh HL, Soh HY (2011) Taxonomy and zoogeography of euchaetid copepods (Calanoida, Clausocalanoidea) from Korean waters, with notes on their female genital structure. Ocean Sci J 46(2):117-132 https://doi.org/10.1007/s12601-011-0011-1
  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772-780 https://doi.org/10.1093/molbev/mst010
  18. Kim DK, Park K, Jo H, Kwak IS (2019) Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: a case study in Gwangyang Bay, South Korea. Appl Sci 9:3272. doi: 10.3390/app9163272
  19. Kim H, Lee CR, Lee SK, Oh SY, Kim W (2020) Biodiversity and community structure of mesozooplankton in the marine and coastal national park areas of Korea. Diversity 12:233. doi:10.3390/d12060233
  20. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb 79(17):5112-5120 https://doi.org/10.1128/AEM.01043-13
  21. Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10(1):34. doi:10.1186/1742-9994-10-34
  22. Lindeque PK, Parry HE, Harmer RA, Somerfield PJ, Atkinson A (2013) Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PloS One 8(11): e81327. doi:10.1371/journal.pone.0081327
  23. Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego, 710 p
  24. NIBR (2013) Invertebrate fauna of Korea: marine planktonic copepods II. National Institute of Biological Resource, 11-1480592-000652-01, 41 p
  25. Peterson W (1998) Life cycle strategies of copepods in coastal upwelling zones. J Marine Syst 15:313-326 https://doi.org/10.1016/S0924-7963(97)00082-1
  26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75(23):7537-7541 https://doi.org/10.1128/AEM.01541-09
  27. Schminke HK (2007) Entomology for the copepodologist. J Plankton Res 29(suppl_1):i149-i162 https://doi.org/10.1093/plankt/fbl073
  28. Schroeder A, Stankovic D, Pallavicini A, Gionechetti F, Pansera M, Camatti E (2020) DNA metabarcoding and morphological analysis-assessment of zooplankton biodiversity in transitional waters. Mar Environ Res 160:104946. doi:10.1016/j.marenvres.2020.104946
  29. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21(8):1794-1805 https://doi.org/10.1111/j.1365-294X.2012.05538.x
  30. Yoon WD, Cho SH, Lim D, Choi YK, Lee Y (2000) Spatial distribution of Euphausia pacifica (Euphausiacea: crustacea) in the Yellow Sea. J Plankton Res 22(5):939-949 https://doi.org/10.1093/plankt/22.5.939