DOI QR코드

DOI QR Code

Evaluation of the Use of Inertial Navigation Systems to Improve the Accuracy of Object Navigation

  • Iasechko, Maksym (Department of Air Defense Armaments of the Land Forces, Ivan Kozhedub Kharkiv National Air Force University) ;
  • Shelukhin, Oleksandr (Azov Maritime Institute of the National University "Odesa Maritime Academy") ;
  • Maranov, Alexandr (Department of Technical Systems and Management Processes in Navigation, State University of Infrastructure and Technologies) ;
  • Lukianenko, Serhii (Simulation center, Ivan Chernyakhovskyi National Defense University of Ukraine) ;
  • Basarab, Oleksandr (Department of Telecommunication and Informational Systems, National Academy of the State Border Guard Service of Ukraine named after Bohdan Khmelnytsky) ;
  • Hutchenko, Oleh (Department of the Central Research Institute of the Armed Forces of Ukraine)
  • Received : 2021.03.05
  • Published : 2021.03.30

Abstract

The article discusses the dead reckoning of the traveled path based on the analysis of the video data stream coming from the optoelectronic surveillance devices; the use of relief data makes it possible to partially compensate for the shortcomings of the first method. Using the overlap of the photo-video data stream, the terrain is restored. Comparison with a digital terrain model allows the location of the aircraft to be determined; the use of digital images of the terrain also allows you to determine the coordinates of the location and orientation by comparing the current view information. This method provides high accuracy in determining the absolute coordinates even in the absence of relief. It also allows you to find the absolute position of the camera, even when its approximate coordinates are not known at all.

Keywords

References

  1. Yeromina, N., Petrov, S., Tantsiura, A., Iasechko, M., & Larin, V. Formation of reference images and decision function in radiometric correlationextremal navigation systems. Eastern-European Journal of Enterprise Technologies, 4(94), 2018, 27-35. https://doi.org/10.15587/1729-4061.2018.139723.
  2. Fursov, V. A., Bibikov, S. A., Yakimov, P. Y. (2013). Localization of objects contours with different scales in images using Hough transform. Computer Optics, 37(4), 496-502. doi: https://doi.org/10.18287/0134-2452-2013-37-4-496-502.
  3. Gnilitskii, V. V., Insarov, V. V., Chernyavskii, A. S. (2010). Decision making algorithms in the problem of object selection in images of ground scenes. Journal of Computer and Systems Sciences International, 49 (6), 972-980. doi: https://doi.org/10.1134/s1064230710060158.
  4. Bogush, R., Maltsev, S. (2007). Minimax Criterion of Similarity for Video Information Processing. 2007 Siberian Conference on Control and Communications. doi: https://doi.org/10.1109/sibcon.2007.371310.
  5. Mukhina, M. P., Seden, I. V. (2014). Analysis of modern correlation extreme navigation systems. Electronics and Control Systems, 1 (39).doi: https://doi.org/10.18372/1990-5548.39.7343.
  6. Munoz, X., Freixenet, J., Cufi, X., Martii, J. (2003). Strategies for image segmentation combining region and boundary information. Pattern Recognition Letters, 24 (1-3), 375-392. doi: https://doi.org/10.1016/s0167-8655(02)00262-3
  7. Hruska, R., Mitchell, J., Anderson, M., Glenn, N. F. (2012). Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sensing, 4 (9), 2736-2752. doi: https://doi.org/10.3390/rs4092736.
  8. Acevo-Herrera, R., Aguasca, A., Bosch-Lluis, X., Camps, A., Martinez-Fernandez, J., Sanchez-Martin, N., Perez-Gutierrez, C. (2010). Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes. Remote Sensing, 2 (7), 1662-1679. doi: https://doi.org/10.3390/rs2071662.
  9. O. Turinskyi, M. Burdin, M. Iasechko, V. Larin, Y. Gnusov, D. Ikaev, V. Borysenko, and V. Manoylo. Protection of board radioelectronic equipment from the destructive powerful electromagnetic radiation with the use of natural technologies, IJETER, 7(11), 2019, pp. 542 - 548. doi: 10.30534/ijeter/2019/237112019.
  10. M. Iasechko, V. Larin, D. Maksiuta, O. Ochkurenko, I. Krasnoshapka, Y.Samsonov, H. Lyashenko, A.Zinchenko, and R.Vozniak. Model description of the modified solid state plasma material for electromagnetic radiation protection, IJETER, 7(10), 2019, pp. 376 - 382. doi: 10.30534/ijeter/2019/027102019.
  11. O. Turinskyi, M. Iasechko, V. Larin, D. Dulenko, V. Kravchenko, O. Golubenko, D.Sorokin, and O. Zolotukhin. Model and development of plasma technology for the protection ofradio-electronic means of laser emission, IJATCSE. 8(5), 2019, pp. 2429-2433. doi:10.30534/IJATCSE/2019/85852019.
  12. M.Iasechko, Y. Gnusov, I. Manzhai, O. Uhrovetskyi, V.Manoylo, A. Iesipov,O. Zaitsev, M. Volk, and O. Vovk. Determination of requirements for the protection of radio-electronicequipment from the terroristic influence by electromagnetic radiation, IJETER, 7(12), 2019, pp. 772 - 777. doi: 10.30534/ijeter/2019/077122019.
  13. M. Iasechko, M. Kolmykov, V. Larin, S.Bazilo, H. Lyashenko, P. Kravchenko, N. Polianova and I. Sharapa. Criteria for performing breakthroughs in the holes of radio electronic means under the influence of electromagnetic radiation, ARPN Journal of Engineering and Applied Sciences, 15(12), 2020, pp. 1380 - 1384.
  14. M. Iasechko, N. Sachaniuk-Kavets'ka, V.Kostrytsia, V.Nikitchenko and S. Iasechko. The results of simulation of the process of occurrence of damages to the semiconductor elements under the influence of multi-frequency signals of short duration, Journal of Critical Reviews, 7(12), 2020, pp. 109 - 112. doi:10.31838/jcr.07.13.18.
  15. M. Iasechko, V. Larin, D. Maksiuta, S.Bazilo and I. Sharapa. The method of determining the probability of affection of the semiconductor elements under the influence of the multifrequency space-time signals, Journal of Critical Reviews, 7(9), 2020, pp. 569 - 571. doi: 10.31838/jcr.07.09.113.
  16. O. Turinskyi, M. Iasechko, V. Larin, T. Prokopenko, O. Kolmohorov, O. Salash, V. Tarshyn and Yu. Dziubenko. Determination of requirements for the protection of radio-electronicequipment from the terroristic influence by electromagnetic radiation, IJETER, 8(4), 2020, pp. 1333 - 1334. doi: 10.30534/ijeter/2020/64842020.