DOI QR코드

DOI QR Code

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles

억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석

  • Son, Su-Won (Seismic Simulation Test Center, Pusan National Univ.) ;
  • Im, Jong-Chul (Department of Civil and Environmental Engineering, Pusan National Univ.) ;
  • Seo, Min-Su (Department of Civil and Environmental Engineering, Pusan National Univ.) ;
  • Hong, Seok-Woo (Department of Civil Engineering, Dong-Eui Univ.)
  • Received : 2021.01.26
  • Accepted : 2021.01.29
  • Published : 2021.03.30

Abstract

In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.

도심지에서는 공간 활용을 위해 구조물 하부 깊은 지하까지 구조물을 설치하고 있다. 그래서 구조물 건설 시, 지반에서 발생하는 토압을 방지하기 위해서 흙막이를 활용하고 있다. 굴착공사에 적용되던 흙막이가 건설기술의 발전으로 인해서 성토 공사나 옹벽 설치시에 가시설 낙석이나 산사태와 같은 위험 방지용으로도 이용되고 있다. 일반적으로 성토공사시 가시설 흙막이를 적용하는 경우는 기존에 존재하는 도로나 철도를 확장하는 경우이다. 그러므로 고속철도의 복선화 현장과 같은 성토공사에 적용되는 흙막이에 관한 연구가 필요하다. 본 연구에서는 일반적인 1열 H-pile 흙막이와 지주식 흙막이 2종류에 대해 수치해석을 하였으며, 고속철도의 단선지역에 성토하여 복선화하는 공사에 적용된 흙막이의 안정성을 분석하였다. 지주식 흙막이는 사면안정에 적용되는 억지 말뚝(이하 배면지주)을 흙막이 벽체(이하 전면지주)에 경사지게 결합한 공법이다. 분석결과, 지주식 공법은 동적하중이 적용되는 동안, 전면에만 H-plie이 설치된 타입에 비해 수평변위가 최대 19.0%만 발생하였다. 또한, 고속철의 운행속도가 느릴수록 변위가 많이 발생하였으며, 이 결과는 운행속도가 저속인 구간에서의 지반 설계시 더욱 주의가 필요하다는 것을 보여준다.

Keywords

Acknowledgement

This work was supported by Dong-eui University Grant. (202003540001)

References

  1. Bauer, G. E. (1984), "Movements associated with the construction of a deep excavation", Proc. of the 3th International Conf. on Ground Movements and Structures, Cardiff, pp.694-701.
  2. Bowles, J. E. (1988) Foundation Analysis and Design. 4th Edition, McGraw Hill.
  3. Caspe, M. S. (1966). "Surface settlement adjacent to braced open cuts", Journal of Soil Mechanics & Foundations Division, Vol.92, No.4, pp.51-59. https://doi.org/10.1061/JSFEAQ.0000889
  4. Clough, G. W. and O'Rourke. T. D. (1990), "Construction induced movements of in situ walls". Proceedings of Design and Performance of Earth Retaining Structures, Vol.25, pp.439-470.
  5. Faheem, H., Cai, F. and Ugai, K. (2004), "Three-dimensional base stability of rectangular excavations in soft soils using FEM", Computers and Geotechnics, Vol.31, No.2, pp.67-74. https://doi.org/10.1016/j.compgeo.2004.02.005
  6. Faheem, H., Cai, F., Ugai, K. and Hagiwara, T. (2003), "Two-dimensional base stability of excavations in soft soils using FEM", Computers and Geotechnics, Vol.30, No.2, pp.141-163. https://doi.org/10.1016/S0266-352X(02)00061-7
  7. Fry, R. H. and Rumsey, P. B. (1983) "Prediction and control of ground movement associated with trench excavation", Water Polluntion Control, Vol.82, No.2, pp.151-163.
  8. Jeong, S. S., Sim, J. U. and Lee, S. J. (2016), "A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall", Journal of the Korean Geotechnical Society, Vol.32, No.4, pp.29-39. (in Korean) https://doi.org/10.7843/kgs.2016.32.4.29
  9. Korea Rail Network Authority. (2010), Soil Survey Report of Detailed Design in the Daegu Line; Korea Rail Network Authority: Daejeon, Korea, pp.56. (In Korean)
  10. Lee, J. H., Oh, D. W., Kong, S. M., Jung, H. S. and Lee, Y. J. (2018), "Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall", Journal of the Korean Geosynthetics Society, Vol.17, No.1, pp.95-109. (in Korean) https://doi.org/10.12814/JKGSS.2018.17.1.095
  11. Mana, A. I. and Clough, G. W. (1981), "Prediction of movements for braced cuts in clay", Journal of the Geotechnical Engineering Division, ASCE, Vol.107, No.6, pp.759-777. https://doi.org/10.1061/AJGEB6.0001150
  12. Peck, R. B. (1969), "Advantages and limitations of the observational method in applied soil mechanics", Geotechnique, Vol.19, No.2, pp.171-187. https://doi.org/10.1680/geot.1969.19.2.171