DOI QR코드

DOI QR Code

Insecticide Resistance Monitoring of Bemisia tabaci (Hemiptera: Aleyrodidae) in Korea

전국 담배가루이 약제 저항성 조사

  • Kim, Sanghyeon (Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, Sung Jin (Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University) ;
  • Cho, Susie (Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University) ;
  • Lee, Si Hyeock (Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University)
  • 김상현 (서울대학교 농생명공학부 곤충학전공) ;
  • 김성진 (서울대학교 농생명공학부 곤충학전공) ;
  • 조수지 (서울대학교 농생명공학부 곤충학전공) ;
  • 이시혁 (서울대학교 농생명공학부 곤충학전공)
  • Received : 2020.11.18
  • Accepted : 2020.12.31
  • Published : 2021.06.01

Abstract

Sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an insect pest with sucking mouth part and globally attacks diverse crops and vegetables. Since first reported in 1998, it is now widely spread in many regions in Korea. Due to insecticide resistance, it is necessary for optimal control of the whiteflies to select effective insecticides with precise insecticide resistance monitoring. In this study, B. tabaci individuals were collected from 12 regions in 7 provinces of Korea from June to September in 2020. Using these field populations, insecticide resistance levels were monitored using a residual contact bioassay along with molecular markers. Bioassay results revealed that B. tabaci possessed high levels of resistance to five insecticides exhibiting different modes of action: dinotefuran, spinosad, emamectin benzoate, chlorfenapyr, and bifenthrin. In addition, quantitative sequencing in target sites of organophosphate and pyrethroid insecticides revealed that point mutations reached to saturated or near-saturated levels across the country. This suggests that insecticide resistance management is required for effective control of B. tabaci populations in Korea.

담배가루이(Bemisia tabaci (Gennadius))는 전세계적으로 다양한 작물을 가해하고 있는 흡즙성 해충이다. 국내에서는 1998년에 최초로 유입이 보고되었고 현재 전국에 널리 퍼져 농가에 경제적으로 큰 손실을 주고 있다. 담배가루이의 주 방제방법인 화학적 방제를 위해서는 정확한 약제 저항성 진단을 바탕으로 한 약제 선택이 중요하다. 따라서 본 연구에서는 2020년 6월부터 10월까지 전국 7개도 12지역의 온실에서 담배가루이를 채집하여 잔류접촉법 기반 생물검정 및 분자마커를 통해 약제 저항성을 진단하였다. 그 결과, 작용기작이 다른 5종 약제(dinotefuran, spinosad, emamectin benzoate, chlorfenapyr 및 bifenthrin)에 대해 전국적으로 높은 저항성을 지니고 있으며 유기인계 및 피레스로이드계 약제에 대한 저항성 점돌연변이가 포화상태임을 확인하였다. 이는 약제 저항성 모니터링에 기반한 담배가루이 약제 저항성 관리가 시급하다는 것을 시사한다.

Keywords

Acknowledgement

본 연구는 농촌진흥청의 '시설 내 외래 미소해충의 화학적 방제력 및 약효증대기술 개발 (과제번호: PJ013356)' 와 Brain Korea Plus 21의 지원에 의해 수행되었습니다.

References

  1. Alon, M., Alon, F., Nauen, R., Morin, S., 2008. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect. Biochem. Molec. 38, 940-949. https://doi.org/10.1016/j.ibmb.2008.07.007
  2. Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V.L., Crossthwaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson, M.S., Slater, R., 2011. Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci. 12.
  3. Byrne, D.N., Bellows, T.S., 1991. Whitefly Biology. Annu. Rev. Entomol. 36, 431-457. https://doi.org/10.1146/annurev.en.36.010191.002243
  4. Horowitz, A.R., Kontsedalov, S., Khasdan, V., Ishaaya, I., 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect. Biochem. 58, 216-225. https://doi.org/10.1002/arch.20044
  5. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., Morin, S., 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect. Biochem. Molec. 38, 634-644. https://doi.org/10.1016/j.ibmb.2008.03.008
  6. Kim, J.I., Kwon, M., Kim, G.H., Kim, S.Y., Lee, S.H., 2015. Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii. J. Asia-Pac. Entomol. 18, 291-296. https://doi.org/10.1016/j.aspen.2015.01.010
  7. Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, A.R., Ghanim, M., 2012. Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008-2010. J. Integr. Agr. 11, 312-320. https://doi.org/10.1016/S2095-3119(12)60015-X
  8. Lee, M., Ahn, S., Cho, W., 2000. Morphological characteristics of Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA markers. Korean J. Appl. Entomol. 39, 5-12.
  9. Lee, W., Lee, S.M., Kim, C.S., Choi, H.S., Akimoto, S.I., Lee, K.Y., Lee, G.S., 2014. Three species of the Bemisia Tabaci (Hemiptera: Aleyrodidae) complex in the Republic of Korea; Detection by an extensive field survey combined with a phylogenetic analysis. Fla. Entomol. 97, 155-161. https://doi.org/10.1653/024.097.0121
  10. Lee, Y.-S., Kim, J.-Y., Hong, S.-S., Park, J., Park, H.-H., 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51, 377-382. https://doi.org/10.5656/KSAE.2012.09.0.051
  11. Morin, S., Williamson, M.S., Goodson, S.J., Brown, J.K., Tabashnik, B.E., Dennehy, T.J., 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect. Biochem. Molec. 32, 1781-1791. https://doi.org/10.1016/S0965-1748(02)00137-6
  12. Naveen, N.C., Chaubey, R., Kumar, D., Rebijith, K.B., Rajagopal, R., Subrahmanyam, B., Subramanian, S., 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports 7.
  13. Pan, H.P., Chu, D., Ge, D.Q., Wang, S.L., Wu, Q.J., Xie, W., Jiao, X.G., Liu, B.M., Yang, X., Yang, N., Su, Q., Xu, B.Y., Zhang, Y.J., 2011. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. J. Econ. Entomol. 104, 978-985. https://doi.org/10.1603/EC11009
  14. Park, J., Jahan, S.M.H., Song, W.G., Lee, H., Lee, Y.S., Choi, H.S., Lee, K.S., Kim, C.S., Lee, S., Lee, K.Y., 2012. Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. J. Asia-Pac. Entomol. 15, 186-191. https://doi.org/10.1016/j.aspen.2011.10.005
  15. Perring, T.M., 2001. The Bemisia tabaci species complex. Crop. Prot. 20, 725-737. https://doi.org/10.1016/S0261-2194(01)00109-0
  16. Qu, C., Zhang, W., Li, F., Tetreau, G., Luo, C., Wang, R., 2017. Lethal and sublethal effects of dinotefuran on two invasive whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae). J. Asia-Pac. Entomol. 20, 325-330. https://doi.org/10.1016/j.aspen.2017.02.006
  17. Roditakis, E., Tsagkarakou, A., Vontas, J., 2006. Identification of mutations in the para sodium channel of Bemisia tabaci from Crete, associated with resistance to pyrethroids. Pestic. Biochem. Phys. 85, 161-166. https://doi.org/10.1016/j.pestbp.2005.11.007
  18. Tang, X.T., Cai, L., Shen, Y., Xu, L.L., Du, Y.Z., 2020. Competitive Displacement between Bemisia tabaci MEAM1 and MED and Evidence for Multiple Invasions of MED. Insects 11.
  19. Wagner, T.L., 1995. Temperature-dependent development, mortality, and adult size of sweetpotato whitefly biotype B (Homoptera: Aleyrodidae) on cotton. Environ. Entomol. 24, 1179-1188. https://doi.org/10.1093/ee/24.5.1179