DOI QR코드

DOI QR Code

Effect of oxygen containing compounds in uranium tetrafluoride on its non-adiabatic calciothermic reduction characteristics

  • Gupta, Sonal (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Kumar, Raj (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Satpati, Santosh K. (Uranium Extraction Division, Bhabha Atomic Research Centre) ;
  • Sahu, Manharan L. (Uranium Extraction Division, Bhabha Atomic Research Centre)
  • Received : 2020.07.12
  • Accepted : 2020.12.21
  • Published : 2021.06.25

Abstract

Uranium ingot is produced by metallothermic reduction of uranium tetrafluoride using magnesium or calcium as reductant. Presence of oxygen containing compounds viz. uranyl fluoride and uranium oxide in the starting uranium fluoride has a significant effect on the firing time, final temperature of the charge, slag-metal separation and hence the metal recovery. As reported in the literature, the maximum tolerable limit for uranyl fluoride in the UF4 is 2.5 wt% and limit for uranium oxide content is in the range 2-3 wt%. No theoretical or experimental basis is available till date for these limits. Analyses have been carried out in this study to understand the effect of UO2F2 concentration in the starting fluoride on the final temperature of the products and thus the reduction characteristics. UF4 having uranyl fluoride concentration, less than as well as more than 2.5 wt%, have been investigated. Thermodynamic calculations have been carried out to arrive at a general expression for the final temperature attained by the products during calciothermic reduction of UF4. Finally, an upper limit for the oxygen containing impurities has been estimated using the CaO-CaF2 phase diagram.

Keywords

Acknowledgement

The authors are thankful to Shri Pramendra Singh, Shri U.B. Naik and all other staff of our lab for their extended support in carrying out the calciothermic reduction experiments. The authors also thank Shri K.N. Hareendhran and Shri S.V. Kadam for carrying out the chemical analysis of UF4 samples.

References

  1. Research Reactors: Purpose and Future, IAEA Publications, 2016. https://www.iaea.org/sites/default/files/18/05/research-reactors-purpose-and-future.pdf.
  2. A. Travelli, The U.S. Reduced enrichment research and test reactor (RERTR) program, in: Proceedings of the 1978 International Meeting on reduced enrichment for research and test reactors, Argonne, Illinois, November 9-10, 1978, pp. 3-18. https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/043/36043285.pdf?r=1&r=1.
  3. A.M. Saliba-Silva, M. Durazzo, E.U. de Carvalho, H.G. Riella, Fabrication of U3Si2 powder for fuels used in IEA-R1 nuclear research reactor, Mater. Sci. Forum 591 (2008) 194-199. https://doi.org/10.4028/www.scientific.net/MSF.591-593.194.
  4. M. Durazzo, A.M. Saliba-Silva, I.C. Martins, E.U. de Carvalho, H.G. Riella, Manufacturing low enriched uranium metal by magnesiothermic reduction of UF4, Ann. Nucl. Energy 110 (2017) 874-885, https://doi.org/10.1016/j.anucene.2017.07.033.
  5. M. Durazzo, A.M. Saliba-Silva, R.H.L. Garcia, E.F. Urano De Carvalho, H.G. Riella, Analysis of slag formation during UF4 magnesiothermic reduction, Nucl. Technol. 200 (2) (2017) 170-176, https://doi.org/10.1080/00295450.2017.1353870.
  6. P.R. Cristini, H.J. Cols, R. Bavaro, M. Bronca, R. Centurion, D. Cestau, Production of molybdenum-99 from low enriched uranium targets (INIS-XA-C-001), International Atomic Energy Agency (IAEA) 35 (7) (2002). http://www.td.anl.gov/Programs/RERTR/Web%202002/index.htm.
  7. J.C. Hutter, B. Srinivasan, M. Vicek, G. Vandegrift, Production of Mo-99 using low-enriched uranium silicide (ANL/CMT/CP-84245), United States 26 (6) (1994). https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/019/26019614.pdf?r=1&r=1.
  8. G. Vandegrift, M.A. Brown, J.L. Jerden, A.V. Gelis, D.C. Stepinski, S. Wiedmeyer, A. Youker, A. Hebden, G. Solbrekken, C. Allen, D. Robertson, Low-enriched uranium high-density target project, in: Compendium Report (No. ANL/NE16/15), Argonne National Lab.(ANL), Argonne, IL (United States), 2016, https://doi.org/10.2172/1331365 report.
  9. C.D. Harrington, A.E. Ruehle (Eds.), Uranium Production Technology, Van Nostrand, 1959.
  10. H. Sutar, A. Sahoo, Computational simulation of unsteady state heat transfer in externally heated magnesio thermic reduction reactor: an overview (CSU-HEMTRR), Int. J. Chem. Eng. Appl. 2 (3) (2011) 212-215. http://ijcea.org/papers/105-A613.pdf.
  11. C. Gupta, H. Singh, Uranium Resource Processing: Secondary Resources, Springer Science & Business Media, 2003.
  12. N.P. Galkin, B.N. Sudarikov (Eds.), Technology of Uranium: (Tekhnologiya Urana), Israel Program for Scientific Translations, 1966.
  13. F.G. Reshetnikov, M.G. Gurvich, Mechanism of negative effect of oxygen-containing uranium compounds on the course and results of metal-lothermal reduction of uranium tetrafluoride, Sov. Atom. Energy 13 (1) (1963) 642-645, https://doi.org/10.1007/BF01587329.
  14. J. Figueroa, M.A. Williamson, Uranium Dioxide Conversion (No. ANL/CSE-13/25), Argonne National Lab.(ANL), Argonne, IL (United States), 2014. https://publications.anl.gov/anlpubs/2014/09/106366.pdf.
  15. P. Soucek, O. Benes, B. Claux, E. Capelli, M. Ougier, V. Tyrpekl, J.F. Vigier, R.J. Konings, Synthesis of UF4 and ThF4 by HF gas fluorination and redetermination of the UF4 melting point, J. Fluor. Chem. 200 (2017) 33-40, https://doi.org/10.1016/j.jfluchem.2017.05.011.
  16. O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry. Revised, Pergamon Press Ltd, Headington Hill Hall, Oxford OX 3 0 BW, UK, 1993.
  17. D.G. Kim, C. van Hoek, C. Liebske, S. van der Laan, P. Hudon, I.H. Jung, Phase diagram study of the CaO-CaF2 system, ISIJ Int. 52 (11) (2012) 1945-1950, https://doi.org/10.2355/isijinternational.52.1945.
  18. J.W. Koger, C.E. Holcombe, J.G. Banker, Coatings on graphite crucibles used in melting uranium, Thin Solid Films 39 (1976) 297-303, https://doi.org/10.1016/0040-6090(76)90649-0.
  19. J.G. Banker, C.E. Holcombe, Energy Research and Development Administration (ERDA), Coating method for graphite, U.S. Patent 4 (1977), 002,784.
  20. O. Sheller, Method for reducing uranium tetrafluoride to metallic uranium, U.S. Patent 3 (1974) 850, 623, issued November 26.
  21. N.P. Galkin, U.D. Veryatin, Y.V. Smirnov, The thermodynamics of the reduction of uranium tetrafluoride by calcium, The Soviet Journal of Atomic Energy 11 (3) (1962) 914-917, https://doi.org/10.1007/BF01491194.
  22. D.R. Gaskell, D.E. Laughlin, Introduction to the Thermodynamics of Materials, CRC Press, 2017.
  23. P.W. Mirwald, G.C. Kennedy, The phase relations of calcium fluoride (fluorite) to 60 kbars and 1800℃, J. Phys. Chem. Solid. 39 (8) (1978) 859-861, https://doi.org/10.1016/0022-3697(78)90145-2.

Cited by

  1. Mechanism of reactivity enhancement of thermal denitration route uranium oxide by employing reduction-oxidation-reduction cycle vol.558, 2021, https://doi.org/10.1016/j.jnucmat.2021.153392