DOI QR코드

DOI QR Code

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima (Energy Engineering and Physics Department, Amirkabir University of Technology) ;
  • Fani, Maryam (Energy Engineering and Physics Department, Amirkabir University of Technology) ;
  • Talebi, Saeed (Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic))
  • Received : 2020.05.31
  • Accepted : 2020.07.08
  • Published : 2021.02.25

Abstract

The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

Keywords

References

  1. U. Pelay, L. Luo, Y. Fan, D. Stitou, M. Rood, Thermal energy storage systems for concentrated solar power plants, Renew. Sustain. Energy Rev. 79 (2017) 82-100. https://doi.org/10.1016/j.rser.2017.03.139
  2. K. Karunamurthy, M.R. Rajesh, B. Vijaypal, A. Kumar, Thermal Conductivity and Charging & Discharging Characteristics of a Thermal Energy Storage System Blended with Al2O3 Nanoparticles, Nano Hybrids and Composites, Trans Tech Publ, 2017.
  3. J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, W. Yang, Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J. 315 (2017) 481-490. https://doi.org/10.1016/j.cej.2017.01.045
  4. Y. Addad, M. Abutayeh, E. Abu-Nada, Effects of nanofluids on the performance of a PCM-based thermal energy storage system, J. Energy Eng. 143 (2017), 04017006. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000433
  5. B. Xu, P. Li, C. Chan, E. Tumilowicz, General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant, Appl. Energy 140 (2015) 256-268. https://doi.org/10.1016/j.apenergy.2014.11.046
  6. M. Seitz, M. Johnson, S. Hubner, Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs, Energy Convers. Manag. 143 (2017) 286-294. https://doi.org/10.1016/j.enconman.2017.03.084
  7. S. Talebi, N. Norouzi, Entropy and exergy analysis and optimization of the VVER nuclear power plant with a capacity of 1000 MW using the firefly optimization algorithm, Nucl. Eng Technol. (2020), https://doi.org/10.1016/j.net.2020.05.011. In press.
  8. H.-S. Park, T.-S. Kwon, S.-K. Moon, S. Cho, D.-J. Euh, S.-J. Yi, Contribution of thermalehydraulic validation tests to the standard design approval of SMART, Nucl. Eng. Technol. 49 (2017) 1537-1546, https://doi.org/10.1016/j.net.2017.06.009.
  9. A.A.E. Abdelhameed, K.S. Chaudri, Y. Kim, Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.05.009. In press.
  10. P. Zhao, Z. Liu, T. Yu, J. Xie, Z. Chen, C. Shen, Code development on steady-state thermal-hydraulic for Small Modular Natural circulation lead-based fast reactor, Nucl. Eng. Technol. (2020), https://doi.org/10.1016/j.net.2020.05.023. In press.
  11. M. Ilyas, F. Aydogan, Steam generator performance improvements for integral small modular reactors, Nucl. Eng. Technol. 49 (2017) 1669-1679, https://doi.org/10.1016/j.net.2017.08.011.
  12. S.A. Alameri, J.C. King, A.K. Alkaabi, Y. Addad, Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - a preliminary design, Nucl. Eng. Technol. 52 (2020) 248-257, https://doi.org/10.1016/j.net.2019.07.028.
  13. F. Chavagnat, D. Curtis, Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage, Nucl. Eng. Technol. 50 (2018) 488-493, https://doi.org/10.1016/j.net.2017.11.011.
  14. R. Jacob, M. Belusko, A.I. Fern andez, L.F. Cabeza, W. Saman, F. Bruno, Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants, Appl. Energy 180 (2016) 586-597. https://doi.org/10.1016/j.apenergy.2016.08.027
  15. G. Comodi, F. Carducci, J.Y. Sze, N. Balamurugan, A. Romagnoli, Storing energy for cooling demand management in tropical climates: a techno-economic comparison between different energy storage technologies, Energy 121 (2017) 676-694. https://doi.org/10.1016/j.energy.2017.01.038
  16. M.H. Mahfuz, A. Kamyar, O. Afshar, M. Sarraf, M.R. Anisur, M.A. Kibria, et al., Exergetic analysis of a solar thermal power system with PCM storage, Energy Convers. Manag. 78 (2014) 486-492. https://doi.org/10.1016/j.enconman.2013.11.016
  17. D. Mazzeo, G. Oliveti, Parametric study and approximation of the exact analytical solution of the Stefan problem in a finite PCM layer in a steady periodic regime, Int. Commun. Heat Mass Tran. 84 (2017) 49-65. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.013
  18. A. Baghernejad, M. Yaghoubi, Thermoeconomic methodology for analysis and optimization of a hybrid solar thermal power plant, Int. J. Green Energy 10 (2013) 588-609. https://doi.org/10.1080/15435075.2012.706672
  19. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, fourth ed., 2013.
  20. M. Romero, J. Gonz alez-Aguilar, Solar thermal power plants: from, in: K.R. Rao (Ed.), Endangered Species to Bulk Power Production in Sun-Belt Regions, Energy & Power Generation Handbook, ASME, New York, 2011.
  21. M. Rezaei, M. Anisur, M. Mahfuz, M. Kibria, R. Saidur, I. Metselaar, Performance and cost analysis of phase change materials with different melting temperatures in heating systems, Energy 53 (2013) 173-178. https://doi.org/10.1016/j.energy.2013.02.031
  22. Y.-Q. Li, Y.-L. He, Z.-F. Wang, C. Xu, W. Wang, Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics, Renew. Energy 39 (2012) 447-454. https://doi.org/10.1016/j.renene.2011.08.026
  23. C.W. Robak, T.L. Bergman, A. Faghri, Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications, Sol. Energy 85 (2011) 2461-2473. https://doi.org/10.1016/j.solener.2011.07.006
  24. E. Querol, B. Gonzalez-Regueral, J.L. Perez-Benedito, Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes, Springer Science & Business Media, 2012.
  25. I. Dincer, M.A. Rosen, P. Ahmadi, Optimization of Energy Systems, Wiley, 2017.
  26. M. Rahmatian, F. Ahmadi Boyaghchi, Exergo-environmental and exergoeconomic analyses and multi-criteria optimization of a novel solar-driven CCHP based on Kalina cycle, Energy Equip. Syst. 4 (2016) 225-244.
  27. A. Naserbegi, M. Aghaie, A. Minuchehr, Gh Alahyarizadeh, A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA), Energy 148 (2018) 373-385. https://doi.org/10.1016/j.energy.2018.01.119
  28. Z. Yang, Z. Meng, C. Yan, K. Chen, Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system, Nucl. Eng. Technol. 49 (2017) 1617-1628. https://doi.org/10.1016/j.net.2017.07.026
  29. J. Moon, Y.H. Jeong, Y. Addad, Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability, Nucl. Eng. Technol. 52 (2020) 734-741. https://doi.org/10.1016/j.net.2019.10.010
  30. A.D. Ronco, A. Cammi, S. Lorenzi, Preliminary analysis and design of the heat exchangers for the molten salt fast reactor, Nucl. Eng. Technol. 52 (2020) 51-58. https://doi.org/10.1016/j.net.2019.07.013
  31. Z. Yuan, K.E. Herold, Specific heat measurements on aqueous lithium bromide, HVAC R Res. 11 (2005) 361-375, 2005. https://doi.org/10.1080/10789669.2005.10391143
  32. N. Norouzi, 4E Analysis and design of a combined cycle with a geothermal condensing system in Iranian Moghan diesel power plant, Int. J. Air-Conditioning Refrig. (2020), https://doi.org/10.1142/S2010132520500224. In press.
  33. N. Norouzi, S. Talebi, M. Fabi, H. Khajehpour, Heavy oil thermal conversion and refinement to the green petroleum: a petrochemical refinement plant using the sustainable formic acid for the process, Biointerface Res. Appl. Chem. 10 (2020) 6088-6100, https://doi.org/10.33263/BRIAC105.60886100.
  34. N. Norouzi, 4E analysis of a fuel cell and gas turbine hybrid energy system, Biointerface Res. Appl. Chem. 11 (2021) 7568-7579, https://doi.org/10.33263/BRIAC111.75687579.
  35. J.S. Akhatov, Energy and exergy analysis of solar PV powered reverse osmosis desalination, Appl. Sol. Energy 52 (2016) 265-270, https://doi.org/10.3103/S0003701X16040034.
  36. N. Norouzi, G. Zarazua de Rubens, S. Choupanpiesheh, P. Enevoldsen, When pandemics impact economies and climate change: exploring the impacts of COVID-19 on oil and electricity demand in China, Energy Res. Soc. Sci. 68 (2020), https://doi.org/10.1016/j.erss.2020.101654, 101654.

Cited by

  1. The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change vol.53, pp.5, 2021, https://doi.org/10.1016/j.net.2020.10.013
  2. The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change vol.53, pp.5, 2021, https://doi.org/10.1016/j.net.2020.10.013