DOI QR코드

DOI QR Code

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok (Department of Intergrative Medicine, Major in Digital Healthcare, Yonsei University) ;
  • Lee, Youngjin (Department of Radiological Science, Gachon University)
  • Received : 2020.10.23
  • Accepted : 2021.01.09
  • Published : 2021.07.25

Abstract

Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Keywords

Acknowledgement

We would like to thank Prof. Chan Rok Park for helping us acquire the phantom data.

References

  1. K. Kim, M.H. Lee, Y. Lee, Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging, Nuclear Engineering and Technology 52 (2020) 2594-2600. https://doi.org/10.1016/j.net.2020.04.032
  2. P. Zanzonico, Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems, Radiat. Res. 177 (2012) 349-364. https://doi.org/10.1667/RR2577.1
  3. Z.H. Cho, Y.D. Son, H.K. Kim, K.N. Kim, S.H. Oh, J.Y. Han, I.K. Hong, Y.B. Kim, A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain, Proteomics 8 (2008) 1302-1323. https://doi.org/10.1002/pmic.200700744
  4. S. Sohn, H.J. Shi, S.H. Wang, S.K. Lee, S.Y. Park, J.S. Lee, J.S. Eom, Mycobacterium avium complex infection-related immune reconstitution inflammatory syndrome mimicking lymphoma in an human immunodeficiency virus-infected patient, Infection & Chemotherapy 50 (2018) 350-356. https://doi.org/10.3947/ic.2018.50.4.350
  5. C.R. Park, Y. Lee, Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences, Nuclear Engineering and Technology 51 (2019) 1610-1615. https://doi.org/10.1016/j.net.2019.04.008
  6. D.W. Townsend, Multimodality imaging of structure and function, Phys. Med. Biol. 53 (2008) R1-R39. https://doi.org/10.1088/0031-9155/53/4/R01
  7. C.T. Yang, K.K. Ghosh, P. Padmanabhan, O. Langer, J. Liu, D.N.C. Eng, C. Halldin, B. Gulyas, PET-MR and SPECT-MR multimodality probes: development and challenges, Theranostics 8 (2018) 6210-6232. https://doi.org/10.7150/thno.26610
  8. F.P. Jansen, J.L. Vanderheyden, The future of SPECT in a time of PET, Nucl. Med. Biol. 34 (2007) 733-735. https://doi.org/10.1016/j.nucmedbio.2007.06.013
  9. D.J. Rowland, S.R. Cherry, Small-animal preclinical nuclear medicine instrumentation and methodology, Semin. Nucl. Med. 38 (2008) 209-222. https://doi.org/10.1053/j.semnuclmed.2008.01.004
  10. H.H. Li, J.R. Votaw, Optimization of PET activation studies based on the SNR measured in the 3-D hoffman brain phantom, IEEE Trans. Med. Imag. 17 (1998) 596-605. https://doi.org/10.1109/42.730404
  11. D.W. Townsend, Positron emission tomography/computed tomography, Semin. Nucl. Med. 38 (2008) 152-166. https://doi.org/10.1053/j.semnuclmed.2008.01.003
  12. P. Lecoq, Development of new scintillators for medical applications, Nucl. Instrum. Methods Phys. Res. 809 (2016) 130-139. https://doi.org/10.1016/j.nima.2015.08.041
  13. Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322. https://doi.org/10.3938/jkps.62.1317
  14. S. Abbaspour, B. Mahmoudian, J.P. Islamian, Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging, World J. Nucl. Med. 16 (2017) 101-107. https://doi.org/10.4103/1450-1147.203079
  15. P. Russo, F.D. Lillo, V. Corvino, P.M. Frallicciardi, A. Sarno, G. Mettivier, CdTe compact gamma camera for coded aperture imaging in radioguided surgery, Phys. Med. 69 (2020) 223-232. https://doi.org/10.1016/j.ejmp.2019.12.024
  16. S. Pujals, N. Feiner-Gracia, P. Delcanale, I. Voets, L. Albertazzi, Super- resolution microscopy as a powerful tool to study complex synthetic materials, Nature Reviews Chemistry 3 (2019) 68-84. https://doi.org/10.1038/s41570-018-0070-2
  17. D. Ravi, A.B. Szczotka, S.P. Pereira, T. Vercauteren, Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy, Med. Image Anal. 53 (2019) 123-131. https://doi.org/10.1016/j.media.2019.01.011
  18. T. Mamyrbayev, K. Ikematsu, P. Meyer, A. Ershov, A. Momose, J. Mohr, Super-resolution scanning transmission X-ray imaging using single biconcave parabolic refractive lens array, Sci. Rep. 9 (2019), https://doi.org/10.1038/s41598-019-50869-8.
  19. L. Xu, X. Zeng, Z. Huang, W. Li, H. Zhang, Low-dose chest X-ray image super-resolution using generativeadversarial nets with spectral normalization, Biomed. Signal Process Contr. 55 (2020), 101600. https://doi.org/10.1016/j.bspc.2019.101600
  20. M. Elad, A. Feuer, Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images, IEEE Transsanctions on Image Processing 6 (1997) 1646-1658. https://doi.org/10.1109/83.650118
  21. N. Nguyen, P. Milanfar, G. Golub, Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement, IEEE Transsanctions on Image Processing 10 (2001) 1299-1308. https://doi.org/10.1109/83.941854
  22. S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag. (2003) 21-36.
  23. M. Irani, S. Peleg, Improving resolution by image registration, CVGIP Graph. Models Image Process. 53 (1991) 231-239. https://doi.org/10.1016/1049-9652(91)90045-L
  24. S. Farsiu, M.D. Robinson, M. Elad, P. Milanfar, Fast and robust multiframe super resolution, IEEE Transsanctions on Image Processing 13 (2004) 1327-1344. https://doi.org/10.1109/TIP.2004.834669
  25. S. Baker, T. Kanade, Limits on super-resolution and how to break them, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1167-1183. https://doi.org/10.1109/TPAMI.2002.1033210
  26. Z. Lin, H. Shum, Fundamental limits of reconstruction-based superresolution algorithms under local translation, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 83-97. https://doi.org/10.1109/TPAMI.2004.1261081
  27. W.T. Freeman, E.C. Pasztor, O.T. Carmichael, Learning low-level vision, Int. J. Comput. Vis. 40 (2000) 25-47. https://doi.org/10.1023/A:1026501619075
  28. W.T. Freeman, T.R. Jones, E.C. Pasztor, Example-based super-resolution, IEEE Computer Graphics and Applications 22 (2002) 56-65.
  29. R. Fattal, Image upsampling via imposed edge statistics, ACM Trans. Graph. 26 (2007), 95-1-8. https://doi.org/10.1145/1276377.1276496
  30. J. Sun, J. Sun, Z. Xu, H. Shum, Image super-resolution using gradient profile prior, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 23-28.
  31. D. Glasner, S. Bagon, M. Irani, Super-resolution from a single image, in: 2009 IEEE 12th International Conference on Computer Vision, 2009, https://doi.org/10.1109/ICCV.2009.5459271.
  32. J. Yang, Z. Wang, Z. Lin, S. Cohen, T. Huang, Coupled dictionary training for image super-resolution, IEEE Transsanctions on Image Processing 21 (2012) 3467-3478. https://doi.org/10.1109/TIP.2012.2192127
  33. J. Yang, Z. Lin, S. Cohen, Fast image super-resolution based on in-place example regression, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2013, pp. 1059-1066.
  34. J. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed self-exemplars, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015, pp. 5197-5206.
  35. C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016) 295-307. https://doi.org/10.1109/TPAMI.2015.2439281
  36. J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep convolutional networks, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 1646-1654.
  37. J. Kim, J.K. Lee, K.M. Lee, Deeply-recursive convolutional network for image super-resolution, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 1637-1645.
  38. G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 2261-2269.
  39. T. Tong, G. Li, X. Liu, Q. Gao, Image super-resolution using dense skip connections, in: 2017 IEEE International Conference on Computer Vision, CVPR, 2017, pp. 4809-4817.
  40. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472-2481.
  41. M. Koutalonis, H. Delis, G. Spyrou, L. Costaridou, G. Tzanakos, G. Panayiotakis, Contrast-to-noise ratio in magnification mammography: a Monte Carlo study, Phys. Med. Biol. 52 (2007) 3185-3199. https://doi.org/10.1088/0031-9155/52/11/017
  42. O.M. Rijal, H. Ebrahimian, N.M. Noor, Determining features for discriminating PTB and normal lungs using phase congruency model, in: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2012, 2012, pp. 341-344.
  43. L. Yu, X. Zhang, Y. Chu, Super-resolution reconstruction algorithm for infrared image with double regular items based on sub-pixel convolution, Appl. Sci. 10 (2020), https://doi.org/10.3390/app10031109.
  44. J.T. Dobbins III, E. Samei, N.T. Ranger, Y. Chen, Intercomparison of methods for image quality characterization. II. Noise power spectrum, Med. Phys. 33 (2006) 1466-1475. https://doi.org/10.1118/1.2188816
  45. S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv preprint (2015) arXiv:1502.03167.
  46. D. P. Kingma, J. Ba, Adam: a Method for Stochastic Optimization, arXiv preprint (2014) arXiv:1412.6980.
  47. S.Y. Chun, J.A. Fessler, Y.K. Dewaraja, Post-reconstruction non-local means filtering methods using CT side information for quantitative SPECT, Phys. Med. Biol. 58 (2013) 6225-6240. https://doi.org/10.1088/0031-9155/58/17/6225