DOI QR코드

DOI QR Code

An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses

  • Danish, Danish (School of Economics and Trade, Guangdong University of Foreign Studies) ;
  • Ozcan, Burcu (Firat University, Faculty of Economics and Administrative Sciences, Department of Economics) ;
  • Ulucak, Recep (Faculty of Economics and Administrative Sciences, Department of Economics, Erciyes University)
  • Received : 2020.08.07
  • Accepted : 2020.12.08
  • Published : 2021.06.25

Abstract

The transition toward clean energy is an issue of great importance with growing debate in climate change mitigation. The complex nature of nuclear energy-CO2 emissions nexus makes it difficult to predict whether or not nuclear acts as a clean energy source. Hence, we examined the relationship between nuclear energy consumption and CO2 emissions in the context of the IPAT and Environmental Kuznets Curve (EKC) framework. Dynamic Auto-regressive Distributive Lag (DARDL), a newly modified econometric tool, is employed for estimation of long- and short-run dynamics by using yearly data spanning from 1971 to 2018. The empirical findings of the study revealed an instantaneous increase in nuclear energy reduces environmental pollution, which highlights that more nuclear energy power in the Indian energy system would be beneficial for climate change mitigation. The results further demonstrate that the overarching effect of population density in the IPAT equation stimulates carbon emissions. Finally, nuclear energy and population density contribute to form the EKC curve. To achieving a cleaner environment, results point out governmental policies toward the transition of nuclear energy that favours environmental sustainability.

Keywords

References

  1. S.A. Sarkodie, S. Adams, Renewable energy, nuclear energy, and environmental pollution: accounting for political institutional quality in South Africa, Sci. Total Environ. 643 (2018) 1590-1601, https://doi.org/10.1016/ j.scitotenv.2018.06.320.
  2. G. Akhmat, K. Zaman, T. Shukui, F. Sajjad, M.A. Khan, M.Z. Khan, The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries, Environ. Sci. Pollut. Res. 21 (2014) 7425-7435, https://doi.org/10.1007/s11356-014-2693-2.
  3. L.S. Lau, C.K. Choong, C.F. Ng, F.M. Liew, S.L. Ching, Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries, Econ. Modell. 77 (2019) 12-20, https://doi.org/10.1016/j.econmod.2018.09.015.
  4. B. Zhang Danish, B. Wang, Z. Wang, Role of renewable energy and nonrenewable energy consumption on EKC: evidence from Pakistan, J. Clean. Prod. 156 (2017) 855-864, https://doi.org/10.1016/j.jclepro.2017.03.203.
  5. J. Baek, Do nuclear and renewable energy improve the environment? Empirical evidence from the United States, Ecol. Indicat. 66 (2016) 352-356, https://doi.org/10.1016/j.ecolind.2016.01.059.
  6. J. Baek, D. Pride, On the income-nuclear energy-CO2 emissions nexus revisited, Energy Econ. 43 (2014) 6-10, https://doi.org/10.1016/j.eneco.2014.01.015.
  7. Iaea, Climate Change and Nuclear Power, vol. 2018, 2018.
  8. T. Goh, B.W. Ang, Quantifying CO2 emission reductions from renewables and nuclear energy - some paradoxes, Energy Pol. 113 (2018) 651-662, https://doi.org/10.1016/j.enpol.2017.11.019.
  9. K. Fiore, Nuclear energy and sustainability: understanding ITER, Energy Pol. 34 (2006) 3334-3341, https://doi.org/10.1016/j.enpol.2005.07.008.
  10. U. Al-Mulali, Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: a panel data analysis, Prog. Nucl. Energy 73 (2014) 172-178, https://doi.org/10.1016/j.pnucene.2014.02.002.
  11. N. Apergis, J.E. Payne, K. Menyah, Y. Wolde-Rufael, On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth, Ecol. Econ. 69 (2010) 2255-2260, https://doi.org/10.1016/j.ecolecon.2010.06.014.
  12. K. Menyah, Y. Wolde-Rufael, CO2 emissions, nuclear energy, renewable energy and economic growth in the US, Energy Pol. 38 (2010) 2911-2915, https://doi.org/10.1016/j.enpol.2010.01.024.
  13. A. Adamantiades, I. Kessides, Nuclear power for sustainable development: current status and future prospects, Energy Pol. 37 (2009) 5149-5166, https://doi.org/10.1016/j.enpol.2009.07.052.
  14. K. Saidi, M. Ben Mbarek, Nuclear energy, renewable energy, CO2 emissions, and economic growth for nine developed countries: evidence from panel Granger causality tests, Prog. Nucl. Energy 88 (2016) 364-374, https://doi.org/10.1016/J.PNUCENE.2016.01.018.
  15. F.L. Toth, H.H. Rogner, Oil and nuclear power: past, present, and future, Energy Econ. 28 (2006) 1-25, https://doi.org/10.1016/j.eneco.2005.03.004.
  16. K. Vaillancourt, M. Labriet, R. Loulou, J.P. Waaub, The role of nuclear energy in long-term climate scenarios: an analysis with the World-TIMES model, Energy Pol. 36 (2008) 2296-2307, https://doi.org/10.1016/j.enpol.2008.01.015.
  17. A. Alam, Nuclear energy, CO2 emissions and economic growth: the case of developing and developed countries, J. Econ. Stud. 40 (2013) 822-834, https://doi.org/10.1108/JES-04-2012-0044.
  18. G. Jimenez, J.M. Flores, Reducing the CO2 emissions and the energy dependence of a large city area with zero-emission vehicles and nuclear energy, Prog. Nucl. Energy 78 (2015) 396-403, https://doi.org/10.1016/j.pnucene.2014.03.013.
  19. International Energy Agency (Iea), Nuclear power in a clean energy system. https://doi.org/10.1787/fc5f4b7e-en, 2019.
  20. N. Mahmood, K. Danish, Z. Wang, B. Zhang, The role of nuclear energy in the correction of environmental pollution: evidence from Pakistan, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.11.027.
  21. B. van der Zwaan, The role of nuclear power in mitigating emissions from electricity generation, Energy Strateg. Rev. 1 (2013) 296-301, https://doi.org/10.1016/j.esr.2012.12.008.
  22. H. Iwata, K. Okada, S. Samreth, Empirical study on the environmental Kuznets curve for CO 2 in France : the role of nuclear energy, Energy Pol. 38 (2010) 4057-4063, https://doi.org/10.1016/j.enpol.2010.03.031.
  23. C.D. Ferguson, Balancing Benefits and Risks, 2007.
  24. H. Ishida, Can nuclear energy contribute to the transition toward a low-carbon economy? The Japanese case, Int. J. Energy Econ. Pol. 8 (2018) 62-68.
  25. K. Dong, R. Sun, H. Jiang, X. Zeng, CO2 emissions, economic growth, and the environmental Kuznets curve in China: what roles can nuclear energy and renewable energy play? J. Clean. Prod. 196 (2018) 51-63, https://doi.org/10.1016/j.jclepro.2018.05.271.
  26. A.C. Marques, J.A. Fuinhas, A.R. Nunes, Electricity generation mix and economic growth: what role is being played by nuclear sources and carbon dioxide emissions in France? Energy Pol. 92 (2016) 7-19, https://doi.org/10.1016/j.enpol.2016.01.027.
  27. H. Iwata, K. Okada, S. Samreth, Empirical study on the determinants of CO2 emissions: evidence from OECD countries, Appl. Econ. 44 (2012) 3513-3519, https://doi.org/10.1080/00036846.2011.577023.
  28. J. Baek, H.S. Kim, Is economic growth good or bad for the environment? Empirical evidence from Korea, Energy Econ. 36 (2013) 744-749, https://doi.org/10.1016/j.eneco.2012.11.020.
  29. M. Jaforullah, A. King, Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence, Energy Econ. 49 (2014) 711-717, https://doi.org/10.1016/j.eneco.2015.04.006.
  30. H. Xie, Y. Yu, W. Wang, Y. Liu, The substitutability of non-fossil energy, potential carbon emission reduction and energy shadow prices in China, Energy Pol. 107 (2017) 63-71, https://doi.org/10.1016/j.enpol.2017.04.037.
  31. N. Kargari, R. Mastouri, Effect of nuclear power on CO2 emission from power plant sector in Iran, Environ. Sci. Pollut. Res. 18 (2011) 116-122, https://doi.org/10.1007/s11356-010-0402-3.
  32. P. Pedroni, Critical values for cointegration tests in heterogeneous panels with multiple regressors, Oxf. Bull. Econ. Stat. 61 (1999) 653-670, https://doi.org/10.1111/1468-0084.0610s1653.
  33. R. Larsson, J. Lyhagen, M. Lothgren, Likelihood-based cointegration tests in heterogeneous panels, Econom. J. 4 (2008) 109-142, https://doi.org/10.1111/1368-423X.00059.
  34. J. Baek, A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries, Appl. Energy 145 (2015) 133-138, https://doi.org/10.1016/j.apenergy.2015.01.074.
  35. H. Iwata, K. Okada, S. Samreth, A note on the environmental Kuznets curve for CO2: a pooled mean group approach, Appl. Energy 88 (2011) 1986-1996, https://doi.org/10.1016/j.apenergy.2010.11.005.
  36. T. Jin, J. Kim, What is better for mitigating carbon emissions - renewable energy or nuclear energy ? A panel data analysis, Renew. Sustain. Energy Rev. 91 (2018) 464-471, https://doi.org/10.1016/j.rser.2018.04.022.
  37. M. Mbarek, K. Saidi, M. Amamri, The relationship between pollutant emissions, renewable energy, nuclear energy and GDP: empirical evidence from 18 developed and developing countries, Int. J. Sustain. Energy 37 (2018) 597-615, https://doi.org/10.1080/14786451.2017.1332060.
  38. S. Lee, M. Kim, J. Lee, Analyzing the impact of nuclear power on CO2 emissions, Sustain. Times 9 (2017) 1-13, https://doi.org/10.3390/su9081428.
  39. A.K. Richmond, R.K. Kaufmann, Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecol. Econ. 56 (2006) 176-189, https://doi.org/10.1016/j.ecolecon.2005.01.011.
  40. P.R. Ehrlich, J.P. Holdren, Impact of population growth, Science 171 (80) (1971) 1212-1217. https://doi.org/10.1126/science.171.3977.1212
  41. E.A. Rosa, T. Dietz, Climate change and society: speculation, construction and scientific investigation, Int. Sociol. 13 (1998) 421-455, https://doi.org/10.1177/026858098013004002.
  42. E. Dogan, R. Ulucak, E. Kocak, C. Isik, The use of ecological footprint in estimating the Environmental Kuznets Curve hypothesis for BRICST by considering cross-section dependence and heterogeneity, Sci. Total Environ. 723 (2020) 138063, https://doi.org/10.1016/j.scitotenv.2020.138063.
  43. P. Fan, C. Watanabe, Promoting industrial development through technology policy: lessons from Japan and China, Technol. Soc. 28 (2006) 303-320, https://doi.org/10.1016/j.techsoc.2006.06.002.
  44. M. Meng, J. Yu, Chinese nuclear energy politics: viewpoint on energy, Energy Sourc. Part B Econ. Plann. Pol. 13 (2018) 72-75, https://doi.org/10.1080/15567249.2017.1403502.
  45. J. Zhang Danish, S.T. Hassan, K. Iqbal, Toward achieving environmental sustainability target in Organization for Economic Cooperation and Development countries : the role of real income , research and development , and transport infrastructure, Sustain. Dev. (2019) 1-8, https://doi.org/10.1002/sd.1973.
  46. R. Hashmi, K. Alam, Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation, J. Clean. Prod. 231 (2019) 1100-1109, https://doi.org/10.1016/j.jclepro.2019.05.325.
  47. I. Ozturk, Measuring the impact of alternative and nuclear energy consumption, carbon dioxide emissions and oil rents on specific growth factors in the panel of Latin American countries, Prog. Nucl. Energy 100 (2017) 71-81, https://doi.org/10.1016/j.pnucene.2017.05.030.
  48. G. Gozgor, E. Demir, Evaluating the efficiency of nuclear energy policies: an empirical examination for 26 countries, Environ. Sci. Pollut. Res. 24 (2017) 18596-18604, https://doi.org/10.1007/s11356-017-9486-3.
  49. H. Zhu, P. Guo, Are shocks to nuclear energy consumption per capita permanent or temporary? A global perspective, Prog. Nucl. Energy 88 (2016) 156-164, https://doi.org/10.1016/j.pnucene.2015.12.013.
  50. R. Ulucak Danish, Linking biomass energy and CO2 emissions in China using dynamic Autoregressive-Distributed Lag simulations, J. Clean. Prod. (2019) 119533, https://doi.org/10.1016/j.jclepro.2019.119533.
  51. S.A. Sarkodie, V. Strezov, H. Weldekidan, E.F. Asamoah, P.A. Owusu, I.N.Y. Doyi, Environmental sustainability assessment using dynamic AutoregressiveDistributed Lag simulations-nexus between greenhouse gas emissions, biomass energy, food and economic growth, Sci. Total Environ. 668 (2019) 318-332, https://doi.org/10.1016/j.scitotenv.2019.02.432.
  52. S. Jordan, A.Q. Philips, Cointegration testing and dynamic simulations of autoregressive distributed lag models, STATA J. 18 (2018) 902-923, https://doi.org/10.1177/1536867x1801800409.
  53. C. Bayer, C. Hanck, Combining non-cointegration tests, J. Time Ser. Anal. 34 (2013) 83-95, https://doi.org/10.1111/j.1467-9892.2012.00814.x.
  54. R.F. Engle, C.W.J. Granger, Co-integration and error correction: representation, estimation, and testing, Econometrica 55 (1987) 251, https://doi.org/10.2307/1913236.
  55. S. Johansen, Statistical analysis of cointegration vectors, J. Econ. Dynam. Contr. 12 (1988) 231-254, https://doi.org/10.1016/0165-1889(88)90041-3.
  56. H.P. Boswijk, Testing for an unstable root in conditional and structural error correction models, J. Econom. 63 (1994) 37-60, https://doi.org/10.1016/0304-4076(93)01560-9.
  57. A. Banerjee, J. Dolado, R. Mestre, Error-correction mechanism tests for cointegration in a single-equation framework, J. Time Ser. Anal. 19 (1998) 267-283, https://doi.org/10.1111/1467-9892.00091.

Cited by

  1. Testing the pollution haven hypothesis on the pathway of sustainable development: Accounting the role of nuclear energy consumption vol.53, pp.8, 2021, https://doi.org/10.1016/j.net.2021.02.008
  2. EKC Test of the Relationship between Nitrogen Dioxide Pollution and Economic Growth-A Spatial Econometric Analysis Based on Chinese City Data vol.18, pp.18, 2021, https://doi.org/10.3390/ijerph18189697
  3. An empirical investigation of nuclear energy and environmental pollution nexus in India: fresh evidence using NARDL approach vol.28, pp.39, 2021, https://doi.org/10.1007/s11356-021-14365-9
  4. Impacts of Energy Efficiency and Economic Growth on Air Pollutant Emissions: Evidence from Angara-Yenisey Siberia vol.14, pp.19, 2021, https://doi.org/10.3390/en14196138
  5. Holistic LCA evaluation of the carbon footprint of prefabricated concrete stairs vol.329, 2021, https://doi.org/10.1016/j.jclepro.2021.129621
  6. Short and Long-Run Causal Effects of CO2 Emissions, Energy Use, GDP and Population Growth: Evidence from India Using the ARDL and VECM Approaches vol.14, pp.24, 2021, https://doi.org/10.3390/en14248333
  7. Combined role of green productivity growth, economic globalization, and eco-innovation in achieving ecological sustainability for OECD economies vol.302, pp.no.pa, 2022, https://doi.org/10.1016/j.jenvman.2021.113980
  8. Does urbanization redefine the environmental Kuznets curve? An empirical analysis of 134 Countries vol.76, 2021, https://doi.org/10.1016/j.scs.2021.103382