DOI QR코드

DOI QR Code

Numerical Analysis of Sufficient Condition on Larger Rate Volume of CIS/non-SIC over IIS/SIC in 3-User NOMA

삼중 사용자 비직교 다중 접속에서 IIS/SIC에 대한 CIS/non-SIC의 확대 전송률 용적의 충분조건의 수치 해석

  • 정규혁 (단국대학교 소프트웨어학과)
  • Received : 2021.06.19
  • Accepted : 2021.08.20
  • Published : 2021.08.28

Abstract

Since a sufficient condition on the larger rate volume of 3-user correlated information sources (CIS)/non-successive interference cancellation (SIC) non-orthogonal multiple access (NOMA) over independent information sources (IIS)/SIC NOMA has not been investigated, this paper analyzes such a sufficient condition. First, we demonstrates that the rate volume of 3-user CIS/SIC NOMA is the same as a portion of the rate volume of 3-user IIS/SIC NOMA. Then, by identifying a dominant rate region, we calculate the sufficient condition on the larger rate volume of 3-user CIS/non-SIC NOMA over 3-user IIS/SIC NOMA. We also show that with such condition, the rate volume of 3-user CIS/non-SIC NOMA can be larger than that of 3-user IIS/SIC NOMA.

삼중 사용자 CIS/non-SIC 비직교 다중 접속의 IIS/SIC 비직교 다중 접속에 대한 확대된 전송률 용적의 충분조건에 대한 연구가 미비하여, 본 논문은 그러한 충분조건을 분석한다. 먼저, 삼중 상관 정보원/SIC 비직교 다중 접속의 전송률 용적이 삼중 독립 정보원/SIC 비직교 다중 접속의 전송률 용적의 일부와 일치하는 것을 입증한다. 다음, 우세 전송률 영역을 확인함으로써, 삼중 상관 정보원/non-SIC 비직교 다중 접속이 상중 독립 정보원/SIC 비직교 다중 접속에 대한 확대된 전송률 용적의 충분조건을 계산한다. 또한, 분석된 조건을 기반으로, 삼중 상관 정보원/non-SIC 비직교 다중 접속의 전송률 용적이 삼중 독립 정보원/SIC 비직교 다중 접속의 전송률 용적보다 확대될 수 있음을 보여준다.

Keywords

References

  1. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, & H. V. Poor. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag., 55(2), 185-191. DOI : 10.1109/MCOM.2017.1500657CM
  2. L. Dai, B. Wang & Y. Yuan, S. Han, C.-L. I & Z. Wang. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53(9), 74-81. DOI : 10.1109/MCOM.2015.7263349
  3. Y. Saito, et al. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1-5).
  4. Q. Wang, R. Zhang, L. L. Yang & L. Hanzo. (2018). Non-orthogonal multiple access: a unified perspective. IEEE Wirel. Commun., 25(2), 10-16. DOI : 10.1109/MWC.2018.1700070
  5. D. Wan, M. Wen, F. Ji, H. Yu & F. Chen. (2018). Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends. IEEE Wireless Commun., 25(2), 109-117. DOI : 10.1109/MWC.2018.1700134
  6. M. Aldababsa, et al. (2020). Bit error rate for NOMA network. IEEE Commun. Lett., 24(6), 1188-119. DOI : 10.1109/LCOMM.2020.2981024
  7. A. A. A. Boulogeorg, N. D. Chatzidiamantis & G. K. Karagiannid. (2020). Non-orthogonal multiple access in the presence of phase noise. IEEE Commun. Lett., 24(5), 1133-1137. DOI : 10.1109/LCOMM.2020.2978845
  8. L. Bariah, S. Muhaidat & A. Al-Dweik. (2019). Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels. IEEE Trans. Commun., 67(2), 1586-1599. DOI : 10.1109/TCOMM.2018.2876867
  9. T. Assaf, A. Al-Dweik, M. E. Moursi & H. Zeineldin. (2019). Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels. IEEE Access, 7, 134539-134555. DOI : 10.1109/ACCESS.2019.2942113
  10. I. Lee & J. Kim. (2019). Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels. IEEE Commun. Lett., 23(8), 1328-1331. DOI : 10.1109/LCOMM.2019.2921770
  11. B. Makki. K. Chitti. A. Behravan. & M. Alouini. (2020). A survey of NOMA: Current status and open research challenges. IEEE Open J. of the Commun. Society, 1, 179-189. DOI : 10.1109/OJCOMS.2020.2969899
  12. W. Wu. F. Zhou. R. Q. Hu. & B. Wang. (2020). Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun, 68(1), 493-505. DOI : 10.1109/TCOMM.2019.2949994
  13. R. M. Christopher, & D. K. Borah. (2020). Physical layer security for weak user in MISO NOMA using directional modulation (NOMAD). IEEE Commun. Lett., 24(5), pp. 956-960. DOI : 10.1109/LCOMM.2020.2975193
  14. Z. Ding, & H. V. Poor. (2020). A simple design of IRS-NOMA transmission. IEEE Commun. Lett., 24(5), pp. 1119-1123. DOI : 10.1109/LCOMM.2020.2974196
  15. Y. Tian, et al. (2020). On the performance of mutual-aid NOMA strategy in cooperative networks. IEEE Commun. Lett., 24(2), 282-286. DOI : 10.1109/LCOMM.2019.2958073
  16. E. M. Almohimmah & M. T. Alresheedi. (2020). Error analysis of NOMA-based VLC systems with higher order modulation schemes. IEEE Access, 8, 2792-2803. DOI : 10.1109/ACCESS.2019.2962331
  17. K. Chung. (2020). A comparison of BER performance for receivers of NOMA in 5G mobile communication system. Journal of Convergence for Information Technology, 10(8), 7-14. DOI : 10.22156/CS4SMB.2020.10.8.007
  18. K. Chung. (2020). Impact of channel estimation errors on SIC performance of NOMA in 5G systems. Journal of Convergence for Information Technology, 10(9), pp. 22-27. DOI : 10.22156/CS4SMB.2020.10.09.022
  19. K. Chung. (2020). On design and performance analysis of asymmetric 2PAM: 5G network NOMA perspective. Journal of Convergence for Information Technology, 10(10), 24-31. DOI : 10.22156/CS4SMB.2020.10.10.024
  20. K. Chung. (2021). On calculation of total power and allocation for achieving near 1+1 capacity region of 2PAM NOMA in 5G networks. Journal of Convergence for Information Technology, 11(5), 9-16. DOI : 10.22156/CS4SMB.2021.11.05.009
  21. K. Chung. (2021). NOMA for correlated information sources in 5G systems. IEEE Commun. Lett., 25(2), 422-426. DOI : 10.1109/LCOMM.2020.3027726
  22. K. Chung. (2021). Correlated superposition coding: Lossless two-user NOMA implementation without SIC under user-fairness. IEEE Wireless Commun. Lett., Jun. 2021. (Early Access) DOI : 10.1109/LWC.2021.3089996