DOI QR코드

DOI QR Code

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences) ;
  • Wang, Chen (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences) ;
  • Chen, Yonglun (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences) ;
  • Chen, Beibei (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences) ;
  • Guo, Peng (Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences) ;
  • Cui, Zongjun (College of Agronomy and Biotechnology, China Agricultural University)
  • Received : 2021.06.07
  • Accepted : 2021.06.28
  • Published : 2021.08.28

Abstract

Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Keywords

Acknowledgement

We acknowledge Shanghai Majorbio Bio-pharm Technology Co. Ltd., for their technical assistance with sequencing. We would like to thank Editage (www.editage.cn) for English language editing. This work was supported by the Applied Basic Research Frontier Foundation of Wuhan, China (2020020601012265), Major Technological Innovation Project of Hubei Province, China (2019ABA114), Natural Science Foundation of Hubei Province, China (2019CFB588), and Special Funds for Local Science and Technology Development Guided by Central government of China (2019ZYYD030).

References

  1. Rubin EM. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845. https://doi.org/10.1038/nature07190
  2. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. https://doi.org/10.1126/science.1137016
  3. Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, et al. 2017. Genome-centric analysis of a thermophilic and cellulolytic bacterial consortium derived from composting. Front. Microbiol. 8: 644.
  4. Zhang D, Wang Y, Zhang C, Zheng D, Guo P, Cui Z. 2018. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J. Microbiol. Biotechnol. 28: 305-313. https://doi.org/10.4014/jmb.1709.09036
  5. Batista-Garcia RA, del Rayo Sanchez-Carbente M, Talia P, Jackson SA, O'Leary N D, Dobson AD, et al. 2016. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod. Bioref. 10: 864-882. https://doi.org/10.1002/bbb.1709
  6. Yang C, Xia Y, Qu H, Li AD, Liu RH, Wang YB, et al. 2016. Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol. Biofuels 9: 138. https://doi.org/10.1186/s13068-016-0557-3
  7. Wierzbicka-Wos A, Henneberger R, Batista-Garcia RA, Martinez-Avila L, Jackson SA, Kennedy J, et al. 2019. Biochemical characterization of a novel monospecific endo-β-1, 4-glucanase belonging to GH family 5 from a rhizosphere metagenomic library. Front. Microbiol. 10: 1342. https://doi.org/10.3389/fmicb.2019.01342
  8. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
  9. Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. 2018. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome 6: 162. https://doi.org/10.1186/s40168-018-0536-y
  10. Oh HN, Lee TK, Park JW, No JH, Kim D, Sul WJ. 2017. Metagenomic SMRT sequencing-based exploration of novel lignocellulosedegrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island. J. Microbiol. Biotechnol. 27: 1670-1680. https://doi.org/10.4014/jmb.1705.05008
  11. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, et al. 2015. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels 8: 14. https://doi.org/10.1186/s13068-014-0193-8
  12. Jimenez DJ, Dini-Andreote F, DeAngelis KM, Singer SW, Salles JF, van Elsas JD. 2017. Ecological insights into the dynamics of plant biomass-degrading microbial consortia. Trends Microbiol. 25: 788-796. https://doi.org/10.1016/j.tim.2017.05.012
  13. Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio. 3: e00036-12.
  14. Guo P, Zhu W, Wang H, Lu Y, Wang X, Zheng D, Cui ZJ. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264. https://doi.org/10.4014/jmb.0906.06035
  15. Soest PJ. 1963. Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. Assoc. Off. Anal. Chem. J. 49: 546-551.
  16. Noguchi H, Park J, Takagi T. 2006. Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34: 5623-5630. https://doi.org/10.1093/nar/gkl723
  17. Fu L, Niu B, Zhu Z, Wu S, Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  18. Peng Y, Leung H, Yiu SM, Chin F. 2012. Idba-ud: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28: 1420-1428. https://doi.org/10.1093/bioinformatics/bts174
  19. Altschul SF, Madden T L, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  20. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
  21. Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. 2018. Dbcan-seq: a database of carbohydrate-active enzyme (cazyme) sequence and annotation. Nucleic Acids Res. 46: D516-D521.
  22. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109
  23. Wang C, Dong D, Wang HS, Muller K, Qin Y, Wang HL, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. https://doi.org/10.1186/s13068-016-0440-2
  24. Zhu N, Yang J, Ji L, Liu J, Yang Y, Yuan, H. 2016. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium emsd5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol. Biofuels 9: 243. https://doi.org/10.1186/s13068-016-0658-z
  25. Zhang D, Wang Y, Zheng D, Guo P, Cheng W, Cui Z. 2016. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium xdc-2 with enhanced xylanase activity. Bioresour. Technol. 221: 686-690. https://doi.org/10.1016/j.biortech.2016.09.087
  26. Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14: 259-263. https://doi.org/10.1016/j.mib.2011.04.004
  27. Koeck DE, Pechtl A, Zverlov VV, Schwarz WH. 2014. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29: 171-183. https://doi.org/10.1016/j.copbio.2014.07.002
  28. van Zyl WH, Lynd LR, den Haan R, McBride JE. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108: 205-235.
  29. Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61: 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
  30. Ye S, Kim JW, Kim SR. 2019. Metabolic engineering for improved fermentation of L-arabinose. J. Microbiol. Biotechnol. 29: 339-346. https://doi.org/10.4014/jmb.1812.12015
  31. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. 2010. Hemicelluloses for fuel ethanol: a review. 101: 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
  32. Dam P, Kataeva I, Yang SJ, Zhou FF, Yin YB, Chou WC, et al. 2011. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39: 3240-3254. https://doi.org/10.1093/nar/gkq1281