DOI QR코드

DOI QR Code

Detection of flash drought using evaporative stress index in South Korea

증발스트레스지수를 활용한 국내 돌발가뭄 감지

  • Lee, Hee-Jin (National Agricultural Water Research Center, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Yoon, Dong-Hyun (Department Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Mark, D. Svoboda (National Drought Mitigation Center (NDMC), School of Natural Resources, University of Nebraska-Lincoln) ;
  • Brian, D. Wardlow (Center for Advanced Land Management Information Technologies (CALMIT), School of Natural Resources University of Nebraska-Lincoln)
  • 이희진 (한경대학교 국가농업용수연구센터) ;
  • 남원호 (한경대학교 사회안전시스템공학부) ;
  • 윤동현 (한경대학교 융합시스템공학과) ;
  • ;
  • Received : 2021.05.18
  • Accepted : 2021.06.11
  • Published : 2021.08.31

Abstract

Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

가뭄은 수개월, 수년 이상에 걸쳐 서서히 발생 및 지속되며, 식생에 대한 피해가 발생할 때까지 확실한 인식이 어렵다. 최근에는 기후변화에 따른 기상이변 및 기온상승 등으로 인하여 가뭄의 발생빈도가 증가하고 있으며, 기상 이상으로 몇 주 또는 몇 달 이내 빠르게 발전하는 가뭄을 확인할 수 있다. '돌발가뭄(Flash Drought)은 일반적인 가뭄과 달리 비교적 짧은 기간 동안 표면온도의 상승과 비정상적으로 낮고 빠르게 감소하는 토양수분으로 인하여 식생에 대한 극심한 스트레스를 유발하면서 광범위한 작물 손실 및 용수공급 감소 등에 대한 피해를 야기하는 가뭄으로 정의된다. 짧은 기간의 급속하게 발생하는 (rapid-onset) 돌발가뭄은 발생원인인 토양수분함량의 감소와 강수의 부족, 낮은 습도, 고온 및 강풍 등으로 인한 증발 수요의 증가 등과 유사한 관계가 있기 때문에 농업 및 자연 생태계에 미치는 영향이 크며, 발생원인 또한 농업가뭄의 범주에 속하기 때문에 이에 대한 모니터링이 필수적이다. 본 연구에서는 증발산량을 활용한 위성영상 기반 가뭄지수인 증발스트레스지수(Evaporative Stress Index, ESI)를 활용하여 국내의 돌발가뭄 감지 조건을 제시하였으며, 표준강수지수, 토양수분, 최고기온, 상대습도, 풍속, 강수량 등과 비교를 통하여 돌발가뭄사상의 수문기상학적 특성에 대하여 분석하였다. 돌발가뭄 발생 이전 8주간을 기준으로 상관분석하였으며, ESI와 표준강수지수, 토양수분, 최고기온에 대하여 0.8(-0.8) 이상의 높은 상관관계를 보였다. 본 연구를 통하여 아직 명확하게 정의되지 않은 돌발가뭄에 대한 유형별 분석 및 국내 돌발가뭄의 수문기상학적 특성을 파악하였으며, 위성영상 기반 가뭄지수인 증발스트레스지수는 돌발가뭄사상의 모니터링에 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 행정안전부 극한재난대응기반기술개발사업의 연구비 지원(2019-MOIS31-010)에 의해 수행되었습니다.

References

  1. Allen, R.G., Pereira, L.S., Raes, D., and Smith, D. (1998). Crop Evapotanspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Italia.
  2. Anderson, M.C., Hain, C.R., Jurecka, F., Trnka, M., Hlavinka, P., Dulaney, W., Otkin, J.A., Johnson, D., and Gao, F. (2016a). "Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic." Climate Research, Vol. 70, No. 2, pp. 215-230. https://doi.org/10.3354/cr01411
  3. Anderson, M.C., Hain, C.R., Otkin, J.A., Zhan, X., Mo, K., Svoboda, M.D., Wardlow, B., and Pimstein, A. (2013). "An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications." Journal of Hydrometeorology, Vol. 14, No. 4, pp. 1035-1056. https://doi.org/10.1175/JHM-D-12-0140.1
  4. Anderson, M.C., Hain, C.R., Wardlow, B., Pimstein A., Mecikalski J.R., and Kustas, W.P. (2011). "Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States." Journal of Climate, Vol. 24, No. 8, pp. 2025-2044. https://doi.org/10.1175/2010JCLI3812.1
  5. Anderson, M.C., Norman, J.M., Mecikalski J.R., Otkin, J.A., and Kustas, W.P. (2007). "A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. model formulation." Journal of Geophysical Research, Vol. 112, No. D10, pp. 1-17.
  6. Anderson, M.C., Zolin, C.A., Hain, C.R., Semmens, K., Yilmaz, M.T., and Gao, F. (2015). " Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013." Journal of Hydrology, Vol. 526, pp. 287-302. https://doi.org/10.1016/j.jhydrol.2015.01.005
  7. Anderson, M.C., Zolin, C.A., Sentelhas, P.C., Hain, C.R., Semmens, K., Yilmaz, M.T., Gao, F., Otkin, J.A., and Tetrault, R. (2016b). "The evaporative stress index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts." Remote Sensing of Environment, Vol. 174, No. 1, pp. 82-99. https://doi.org/10.1016/j.rse.2015.11.034
  8. Christian, J.I., Basara, J.B., Otkin, J.A., Hunt, E.D., Wakefield, R.A., Flanagan, P.X., and Xiao, X. (2019). "A methodology for flash drought identification: Application of flash drought frequency across the United States." Journal of Hydrometeorology, Vol. 20, No. 5, pp. 833-846. https://doi.org/10.1175/JHM-D-18-0198.1
  9. Kim, S.K., Park, J.M., Kim, K.Y., and Choi, M.H., (2015). "Current status and prospectof ground observation soil moisture data in Korea." Water for Future, Vol. 48, No. 12, pp. 16-21.
  10. Kustas, W.P., and Anderson, M.C. (2009). "Advances in thermal infrared remote sensing for land surface modeling." Agricultural and Forest Meteorology, Vol. 149, No. 12, pp. 2071-2081. https://doi.org/10.1016/j.agrformet.2009.05.016
  11. Lee, H.J., Nam, W.H., Yoon, D.H., Hong, E.M., Kim, D.E., Svoboda, M.D., Tadesse, T., and Wardlow, B.D. (2019). "Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea." Journal of the Korean Society of Agricultural Engineers, Vol. 61, No. 3, pp. 1-14. https://doi.org/10.5389/KSAE.2019.61.3.001
  12. Lee, H.J., Nam, W.H., Yoon, D.H., Hong, E.M., Kim, T., Park J.H., and Kim, D.E. (2020). "Percentile approach of drought severity classification in evaporative stress index for South Korea." Journal of the Korean Society of Agricultural Engineers, Vol. 62, No. 2, pp. 63-73. https://doi.org/10.5389/KSAE.2020.62.2.063
  13. Lee, H.J., Nam, W.H., Yoon, D.H., Kim, H.Y., Woo, S.B., and Kim, D.E. (2021). "Drought monitoring for paddy fields using satellite-derived evaporative stress index." Journal of the Korean Society of Agricultural Engineers, Vol. 63, No. 3, pp. 47-57. https://doi.org/10.5389/KSAE.2021.63.3.047
  14. Liu, Y., Zhu, Y., Zhang, L., Ren L., Yuan, F., Yang, X., and Jiang, S. (2020). "Flash droughts characterization over China: From a perspective of the rapid intensification rate" Science of the Total Environment, Vol. 704, pp. 1-14.
  15. Mo, K.C., and Lettenmaier, D.P (2015). "Heat wave flash droughts in decline." Geophysical Research Letters, Vol. 42, No. 8, pp. 2823-2829. https://doi.org/10.1002/2015GL064018
  16. Mo, K.C., and Lettenmaier, D.P. (2016). "Precipitation deficit flash droughts over the United States." Journal of Hydrometeorology, Vol. 17, No. 4, pp. 1169-1184. https://doi.org/10.1175/JHM-D-15-0158.1
  17. Nam, W.H., Hayes, M.J., Svoboda, M.D., Tadesse, T., and Wilhite, D.A. (2015a). "Drought hazard assessment in the context of climate change for South Korea." Agricultural Water Management, Vol. 160, pp. 106-117. https://doi.org/10.1016/j.agwat.2015.06.029
  18. Nam, W.H., Tadesse, T., Wardlow, B., Hayes, M.J., Svoboda, M.D., and Hong, E.M. (2018). "Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events." International Journal of Remote Sensing, Vol. 39, No. 5, pp. 1548-1574. https://doi.org/10.1080/01431161.2017.1407047
  19. Nam, W.H., Tadesse, T., Wardlow, B.D., Jang, M.W., and Hong, S.Y. (2015b). "Satellite-based hybrid drought assessment using Vegetation Drought Response Index in South Korea (VegDRISKorea)." Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 4, pp. 1-9. https://doi.org/10.5389/KSAE.2015.57.4.001
  20. Nguyen, H., Wheeler, M.C., Otkin, J.A., Cowan, T., Frost, A., and Stone, R. (2019). "Using the evaporative stress index to monitor flash drought in Australia." Environmental Research Letters, Vol. 14, No. 6, pp. 1-9.
  21. Noguera, I., Dominguez-Castro, F., and Vincente-Serrano, S.M., (2020). "Characteristics and trends of flash droughts iin Spain, 1961-2018." Annals of the New York Academy of Sciences, Vol. 1472, No. 1, pp. 155-172. https://doi.org/10.1111/nyas.14365
  22. Norman, J.M., Kustas, W.P., and Humes, K.S. (1995). "Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature." Agricultural and Forest Meteorology, Vol. 77, No. 3-4, pp. 263-293. https://doi.org/10.1016/0168-1923(95)02265-Y
  23. Otkin, J.A., Anderson, M.C., Hain, C., and Svoboda, M.D. (2014). "Examining the relationship between drought development and rapid changes in the Evaporative Stress Index." Journal of Hydrometeorology, Vol. 15, No. 3, pp. 938-956. https://doi.org/10.1175/JHM-D-13-0110.1
  24. Otkin, J.A., Anderson, M.C., Hain, C., Mladenova, I.E., Basara, J.B., and Svoboda, M.D. (2013). "Examining rapid onset drought development using thermal infrared-based Evaporative Stress Index." Journal of Hydrometeorology, Vol. 14, No. 4, pp. 1057-1074. https://doi.org/10.1175/JHM-D-12-0144.1
  25. Otkin, J.A., Svoboda, M., Hunt, E.D., Ford, T.W., Anderson, M.C., Hain, C., and Basara, J.B. (2018). "Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States." Bulletin of the American Meteorological Society, Vol. 99, No. 5, pp. 911-919. https://doi.org/10.1175/BAMS-D-17-0149.1
  26. Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer D., Liu, H., Stokes, D., Gumbine, R., Gayno, G., Wang, J., Hou, Y.T., Chuang, H.Y., Juang, H.M., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P.V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., and Goldberg, M. (2010). "The NCEP climate forecast system reanalysis." Bulletin of the American Meteorological Society, Vol. 91, No. 8, pp. 1015-1058. https://doi.org/10.1175/2010BAMS3001.1
  27. Sternberg, T. (2011). "Regional drought has a global impact." Nature, Vol. 472, p. 169. https://doi.org/10.1038/472169d
  28. Sur, C.Y., Kim, K.J., Choi, W.J., Sim, J.H., and Choi, M.H. (2014). "Drought assessments using satellite-based drought index in Korea: Southern region case in 2013." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 3, pp. 127-131. https://doi.org/10.9798/KOSHAM.2014.14.3.127
  29. Svoboda, M.D., LeComte, D., Hayes, M.J., Heim, R., Gleason, K., Angel, F., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S. (2002). "The drought monitor." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1181-1190. https://doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2
  30. Wang, L., Yuan, X., Xie, Z., Wu, P., and Li Y. (2016). "Increasing flash droughts over China during the recent global warming hiatus." Scientific Reports, Vol. 6, No. 1, pp. 1-8. https://doi.org/10.1038/s41598-016-0001-8
  31. Xia, Y., Ek, M.B., Peters-Lidard, C.D., Mocko, D., Svoboda, M.D., Sheffield, J., and Wood, E.F. (2014). "Application of USDM statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States." Journal of Geophysical Research: Atmosphere, Vol. 119, pp. 2947-2965. https://doi.org/10.1002/2013JD020994
  32. Yoon, D.H., Nam, W.H., Lee, H.J., Hong E.M., Kim T., and Kim D.E. (2018). "Appliation of Evaporative Stress Index (ESI) for satellite-based agricultural drought monitoring in South Korea." Journal of the Korean Society of Agricultural Engineers, Vol. 60, No. 6, pp. 121-131. https://doi.org/10.5389/KSAE.2018.60.6.121
  33. Zhang, Y., You, Q., Chen, C., and Li, X. (2017). "Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China." Journal of Hydrology, Vol. 551, pp. 162-176. https://doi.org/10.1016/j.jhydrol.2017.05.044