DOI QR코드

DOI QR Code

Diversity and Mycotoxin Production of Aspergillus flavus in Stored Peanut

저장 땅콩에서 분리된 Aspergillus flavus의 다양성 및 독소생성능

  • Choi, Jung-Hye (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Nah, Ju-Young (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Mi-Jeong (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lim, Su-Bin (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Theresa (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jeomsoon (Division of Microbial Safety, National Institute of Agricultural Sciences, Rural Development Administration)
  • 최정혜 (국립농업과학원 유해생물과) ;
  • 나주영 (국립농업과학원 유해생물과) ;
  • 이미정 (국립농업과학원 유해생물과) ;
  • 임수빈 (국립농업과학원 유해생물과) ;
  • 이데레사 (국립농업과학원 유해생물과) ;
  • 김점순 (국립농업과학원 유해생물과)
  • Received : 2021.07.13
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

Peanuts in storage were estimated for mycotoxigenic fungi and mycotoxins. Peanut samples collected from storages in Gochang were mainly contaminated with Fusarium (17.2±28.0%), Penicillium (12.4±28.0%), and Aspergillus (8.0±7.6%). Other genera, including Talaromyces, Rhizopus, Rhizoctonia, Trichocladium, Clonostachys, Mucor, Chaetomium, Trametes, Epicoccum, and Humicola, were also found. Although aflatoxins were not detected in the peanut samples, 29 strains of Aspergillus flavus were identified using molecular marker genes. Among them, 17 selected isolates produced aflatoxins in solid culture media ranging from 0.61-187.82 ㎍/kg. All of them could produce both aflatoxin B1 and B2 and some (n=5) produced additional G1, G2, or both. This study is the first report that A. flavus stains obtained from Korean stored peanut are aflatoxigenic.

땅콩의 독성곰팡이 및 곰팡이독소 오염현황을 조사하기 위해 고창 지역의 저장고에서 땅콩을 수집하였다. 수집된 땅콩은 Fusarium (17.2±28.0%), Penicillium (12.4±28.0%), Aspergillus (8.0±7.6%) 속 곰팡이로 주로 오염되어 있었으며, 그 외에 Talaromyces, Rhizopus, Rhizoctonia, Trichocladium, Clonostachys, Mucor, Chaetomium, Trametes, Epicoccum, Humicola 속 곰팡이가 검출되었다. 땅콩시료에서 아플라톡신은 검출되지 않았으나, 29점의A. flavus 균주가 분리, 동정되었다. 그 중 17점의 균주를 선발하여 potato dextrose agar (PDA) 배지 상에서 아플라톡신 생성능을 분석한 결과 0.61-187.82 ㎍/kg의 농도범위에서 모두 아플라톡신을 생성하였다. 이들 17 균주는 아플라톡신 B1, B2도 생성하였으며, 일부(5 균주)는 G1 또는 G2를 생성하였다. 이 연구는 국내 저장 땅콩에서A. flavus 오염률 및 독소생성능에 대한 첫 보고이다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: PJ014811)의 지원에 의해 수행된 결과로, 이에 감사드립니다.

References

  1. Klich MA. Aspergillus flavus: The major producer of aflatoxin. Mol Plant Pathol 2007;8:713-22. https://doi.org/10.1111/j.1364-3703.2007.00436.x
  2. Alshannaq A, Yu JH. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 2017;14:632. https://doi.org/10.3390/ijerph14060632
  3. Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, Kang SG. Aflatoxins in food and feed: An overview on prevalence, eetection and control strategies. Front Microbiol 2019;10:2266. https://doi.org/10.3389/fmicb.2019.02266
  4. Perrone G, Gallo A. Aspergillus species and their associated mycotoxins. Methods Mol Biol 2017;1542:33-49. https://doi.org/10.1007/978-1-4939-6707-0_3
  5. Wu F. Perspective: Time to face the fungal threat. Nature 2014;516:S7-S7.
  6. Groopman JD, Kensler TW, Wild CPJARPH. Protective interventions to prevent aflatoxininduced carcinogenesis in developing countries. Annu Rev Public Health 2008;29:187-203. https://doi.org/10.1146/annurev.publhealth.29.020907.090859
  7. Andrade P, Caldas EJWMJ. Aflatoxins in cereals: Worldwide occurrence and dietary risk assessment. World Mycotoxin J 2015;8:415-31. https://doi.org/10.3920/WMJ2014.1847
  8. Wu LX, Ding XX, Li PW, Du XH, Zhou HY, Bai YZ, Zhang LX. Aflatoxin contamination of peanuts at harvest in China from 2010 to 2013 and its relationship with climatic conditions. Food Control 2016;60:117-23. https://doi.org/10.1016/j.foodcont.2015.06.029
  9. Qi N, Yu H, Yang C, Gong X, Liu Y, Zhu Y. Aflatoxin B1 in peanut oil from Western Guangdong, China, during 2016-2017. Food Addit Contam: B Surveillance 2019;12:45-51. https://doi.org/10.1080/19393210.2018.1544173
  10. Park JW. Analysis of peanut and peanut butter retailed in Korea for aflatoxin B1. Korean J Food Sci Technol 2006;38:309-12.
  11. Park MJ, Yoon MH, Hong HG, Joe TS, Lee IS, Park JH, Ko HU. A survey of the presence of aflatoxins in food. J Food Hyg Safety 2008;23:108-12.
  12. Chi MH, Park SY, Lee YH. A quick and safe method for fungal DNA extraction. Plant Pathol J 2009;25:108-11. https://doi.org/10.5423/PPJ.2009.25.1.108
  13. Ehrlich KC, Chang PK, Yu J, Cotty PJ. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 2004;70:6518-24. https://doi.org/10.1128/AEM.70.11.6518-6524.2004
  14. Chang PK, Ehrlich KC, Hua SST. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 2006;108:172-7. https://doi.org/10.1016/j.ijfoodmicro.2005.11.008
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82. https://doi.org/10.1093/nar/25.24.4876
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
  17. Ministry of Food and Drug Safety. Korean food standards codex. Cheongju: Korea Ministry of Food and Drug Safety; 2020
  18. Trucksess MW, Weaver CM, Oles CJ, Fry FS, Jr., Noonan GO, Betz JM, Rader JI. Determination of aflatoxins B1, B2, G1, and G2 and ochratoxin A in ginseng and ginger by multitoxin immunoaffinity column cleanup and liquid chromatographic quantitation: Collaborative study. J AOAC Int 2008;91:511-23. https://doi.org/10.1093/jaoac/91.3.511
  19. Pitt JI, Hocking AD, Glenn DR. An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Microbiol 1983;54:109-14.
  20. Gachomo EW, Mutitu EW, Kotchoni OS. Diversity of fungal species associated with peanuts in storage and the levelsof aflatoxins in infected samples. Int J Agric Biol 2004;6:955-9.
  21. Nakai VK, de Oliveira Rocha L, Goncalez E, Fonseca H, Ortega EMM, Correa B. Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem 2008;106:285-90. https://doi.org/10.1016/j.foodchem.2007.05.087
  22. Adetunji MC, Ezeokoli OT, Ngoma L, Mwanza M. Phylogenetic diversity and prevalence of mycoflora in ready-to-eat supermarket and roadside-vended peanuts. Mycologia 2020;113:1-11.
  23. Ding N, Xing F, Liu X, Selvaraj JN, Wang L, Zhao Y, Wang Y, Guo W, Dai X, Liu Y. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China. Front Microbiol 2015;6:1-10. https://doi.org/10.3389/fmicb.2015.00001
  24. Schindler AF, Palmer JG, Eisenberg WV. Aflatoxin production by Aspergillus flavus as related to various temperatures. Appl Microbiol 1967;15:1006-9. https://doi.org/10.1128/am.15.5.1006-1009.1967
  25. Gilbert MK, Mack BM, Moore GG, Downey DL, Lebar MD, Joardar V, Losada L, Yu J, Nierman WC, Bhatnagar D. Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70. PloS ONE 2018;13:e0199169. https://doi.org/10.1371/journal.pone.0199169