DOI QR코드

DOI QR Code

Reservoir bank slope stability prediction model based on BP neural network

  • Zhang, Guoqiang (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, (Chengdu University of Technology)) ;
  • Feng, Wenkai (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, (Chengdu University of Technology)) ;
  • Wu, Mingtang (Zhejiang Huadong Construction Engineering Corporation Limited) ;
  • Shao, Hai (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, (Chengdu University of Technology)) ;
  • Ma, Feng (Zhejiang Huadong Construction Engineering Corporation Limited)
  • Received : 2020.02.25
  • Accepted : 2021.03.24
  • Published : 2021.10.25

Abstract

Safety monitoring and stability analysis of high slopes are essential for construction of concrete dam in precipitous gorges or mountainous areas. The estimate of slope stability is a difficult engineering shortcoming with a number of variables. Thereafter, a hybrid model of Support Vector Regression (SVR) and Teaching-learning-based optimization technique (TLBO) is proposed to develop the predicting function. TLBO was used in obtaining the best SRV factors to improve the prediction accuracy. Few essential factors, such as the installation height of instruments, classification of rock masses, modulus of elasticity, the complete measuring time cycle, the excavation height of slope, the start measuring time, and the actual excavation height after measurement are considered as the input parameter, but the slope displacement is regarded as output. The outcomes showed SRV-TLBO a reliable hybrid accurate prediction of slope stability, then it was effectively used to the left abutment slope of Jinping I hydropower station located in Yalongjiang concrete dam reservoir as a novel method for this purpose.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China (Grant No. 41977252) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No. SKLGP2020Z001).

References

  1. Afsar Dizaj, E., Fanaie, N. and Zarifpour, A. (2018), "Probabilistic seismic demand assessment of steel frames braced with reduced yielding segment buckling restrained braces", Adv. Struct. Eng., 21, https://doi.org/10.1177/1369433217737115.
  2. Al Kajbaf, A., Fanaie, N. and Najarkolaie, K.F. (2018), "Numerical simulation of failure in steel posttensioned connections under cyclic loading", Eng. Fail. Anal., 91, https://doi.org/10.1016/j.engfailanal.2018.04.024.
  3. Altunisik, A., Gunaydin, M., Sevim, B. and Adanur, S. (2017), "System identification of arch dam model strengthened with CFRP composite materials", Steel Compos. Struct., 25(2), 231-244. https://doi.org/10.12989/scs.2017.25.2.231.
  4. Bode, J. (2000), "Neural networks for cost estimation: simulations and pilot application", Int. J. Production Res., 38(6), 1231-1254. https://doi.org/10.1080/002075400188825
  5. Cao, L.J. and Tay, F.E.H. (2003), "Support vector machine with adaptive parameters in financial time series forecasting", IEEE T. Neural Networks, 14(6), 1506-1518. https://doi.org/10.1080/002075400188825.
  6. Chelgani, S.C., Shahbazi, B. and Rezai, B. (2010), "Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network", Int. J. Minerals Metallurgy Mater., 17(5), 526-534. https://doi.org/10.1007/s12613-010-0353-1.
  7. Chen, X., Wang, T., Ying, R. and Cao, Z. (2021), "A fault diagnosis method considering meteorological factors for transmission networks based on P systems", Entropy, 23(8), 1008. https://doi.org/10.3390/e23081008.
  8. Cheng, H., Li, T., Li, X., Feng, J., Tang, T. and Qin, D. (2021), "Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection", J. Electro. Soc., 168(8), 087504 https://doi.org/10.1149/1945-7111/ac1813.
  9. Cho, S.E. (2009), "Probabilistic stability analyses of slopes using the ANN-based response surface", Comput. Geotech., 36(5), 787-797. https://doi.org/10.1016/j.compgeo.2009.01.003.
  10. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  11. Dawson, E., Roth, W. and Drescher, A. (1999), "Slope stability analysis by strength reduction", Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835.
  12. Fan, P., Deng, R., Qiu, J., Zhao, Z. and Wu, S. (2021), "Well logging curve reconstruction based on kernel ridge regression", Arabian J. Geosci., 14(16), 1-10. https://doi.org/10.1007/s12517-021-07792-y.
  13. Fanaie, N., Aghajani, S. and Afsar Dizaj, E. (2016). "Strengthening of moment-resisting frame using cable-cylinder bracing", Adv. Struct. Eng., 19(11), 1736-1754. https://doi.org/10.1177/1369433216649382
  14. Ghanbari-Ghazijahani, T., Nabati, A., Azandariani, M.G. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin Wall. Struct., 149. https://doi.org/10.1016/j.tws.2020.106614.
  15. Goudarzi, A., Ghassemieh, M., Fanaie, N., Laefer, D.F. and Baei, M. (2016), "Axial load effects on flush end-plate moment connections", Proc. Inst. Civ. Eng. Struct. Build., 170. https://doi.org/10.1680/jstbu.15.00042.
  16. Guo, Q., Xing, Y., Lei, H., Jiao, J. and Chen, Q. (2020), "Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint", Steel Compos. Struct., 36(1), 75-86. https://doi.org/10.12989/scs.2020.36.1.075.
  17. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  18. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  19. Hussain, M., Wajid, S.K., Elzaart, A. and Berbar, M. (2011), "A comparison of SVM kernel functions for breast cancer detection", Proceedings of the 2011 Eighth International Conference Computer Graphics, Imaging and Visualization, IEEE.
  20. Jiang, G.L. and Magnan, J.P. (1997), "Stability analysis of embankments: comparison of limit analysis with methods of slices", Geotechnique, 47(4), 857-872. https://doi.org/10.1680/geot.1997.47.4.857
  21. Kim, K.N., Lee, S.H. and Jung, K.S. (2009), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Compos. Struct., 9(6), 557-568. https://doi.org/10.12989/scs.2009.9.6.557.
  22. Legates, D.R. and McCabe Jr, G.J. (1999), "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation", Water Resour. Res., 35(1), 233-241. https://doi.org/10.1029/1998WR900018
  23. Li, X., Yang, H., Zhang, J., Qian, G., Yu, H. and Cai, J. (2021), "Time-domain analysis of tamper displacement during dynamic compaction based on automatic control", Coatings, 11(9), 1092. https://doi.org/10.3390/coatings11091092.
  24. Liang, X., Zhang, H., Xiao, J. and Chen, Y. (2009), "Improving option price forecasts with neural networks and support vector regressions", Neurocomput., 72(13-15), 3055-3065. https://doi.org/10.1016/j.neucom.2009.03.015.
  25. Lin, H.M., Chang, S.K., Wu, J.H. and Juang, C.H. (2009), "Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: Pre-and post-earthquake investigation", Eng. Geology, 104(3-4), 280-289. https://doi.org/10.1016/j.enggeo.2008.11.007.
  26. Liu, Y., He, Z., Li, B. and Yang, Q. (2013), "Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model", Front. Struct. Civil Eng., 7(1), 24-31. https://doi.org/10.1007/s11709-013-0190-1.
  27. Milivojevic, M., Stopic, S., Friedrich, B., Stojanovic, B. and Drndarevic, D. (2012), "Computer modeling of high-pressure leaching process of nickel laterite by design of experiments and neural networks", Int. J. Minerals Metallurgy Mater., 19(7), 584-594. https://doi.org/10.1007/s12613-012-0599-x.
  28. Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009), "Uniform hazard response spectra and ground motions for Tabriz", J. Scientia Iranica, 16(3), 238-248.
  29. Panda, L., Banerjee, P., Biswal, S.K., Venugopal, R. and Mandre, N. (2014), "Artificial neural network approach to assess selective flocculation on hematite and kaolinite", Int. J. Minerals Metallurgy Mater., 21(7), 637-646. https://doi.org/10.1007/s12613-014-0952-3.
  30. Prasad, B.R., Eskandari, H. and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
  31. Qi, C., Chen, Q. and Kim, S.S. (2020), "Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization", Miner. Eng., 155, 106422. https://doi.org/10.1016/j.mineng.2020.106422.
  32. Qi, C. and Fourie, A. (2019), "Cemented paste backfill for mineral tailings management: Review and future perspectives", Miner. Eng., 144, 106025. https://doi.org/10.1016/j.mineng.2019.106025.
  33. Rao, R.V., Savsani, V.J. and Vakharia, D. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput.- Aided Design, 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
  34. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. http://doi.org/10.12989/sss.2018.22.4.413.
  35. Sakellariou, M. and Ferentinou, M. (2005), "A study of slope stability prediction using neural networks", Geotech. Geological Eng., 23(4), 419. https://doi.org/10.1007/s10706-004-8680-5.
  36. Shiyong, W., Manbin, S. and Jian, W. (2010), "Jinping hydropower project: main technical issues on engineering geology and rock mechanics", Bull. Eng. Geology Environ., 69(3), 325-332. https://doi.org/10.1007/s10064-010-0272-4.
  37. Sola, J. and Sevilla, J. (1997), "Importance of input data normalization for the application of neural networks to complex industrial problems", IEEE T. Nuclear Sci., 44(3), 1464-1468. https://doi.org/10.1109/23.589532.
  38. Song, S., Cai, D., Feng, X., Chen, X. and Wang, D. (2011), "Safety monitoring and stability analysis of left abutment slope of Jinping I hydropower station", J. Rock Mech. Geotech. Eng., 3(2), 117-130. https://doi.org/10.3724/SP.J.1235.2011.00117.
  39. Sun, J., Li, J. and Liu, Q. (2008), "Search for critical slip surface in slope stability analysis by spline-based GA method", J. Geotech. Geoenviron. Eng., 134(2), 252-256. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(252).
  40. Tay, F.E. and Cao, L. (2002), "Modified support vector machines in financial time series forecasting", Neurocomput., 48(1-4), 847-861. https://doi.org/10.1016/S0925-2312(01)00676-2.
  41. Vapnik, V., Golowich, S.E. and Smola, A. (1996), Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9, Citeseer.
  42. Wang, T., Liu, W., Zhao, J., Guo, X. and Terzija, V. (2020a), "A rough set-based bio-inspired fault diagnosis method for electrical substations", Int. J. Elec. Power Energy Syst., 119, 105961. https://doi.org/10.1016/j.ijepes.2020.105961.
  43. Wang, T., Wei, X., Wang, J., Huang, T., Peng, H., Song, X., Cabrera, L.V. and Perez-Jimenez, M.J. (2020b), "A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies", Eng. Appl. Artif. Intel., 92, 103680. https://doi.org/10.1016/j.engappai.2020.103680.
  44. Willmott, C.J. (1981), "On the validation of models", Phys. Geography, 2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213
  45. Wilson, M. (2008), "Support vector machines", Encyclopedia of ecology, 3431-3437.
  46. Wu, H.L. and Wang, Y.F. (2010), "Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets", Steel Compos. Struct., 10(6), 501-516. https://doi.org/10.12989/scs.2010.10.6.501.
  47. Wu, S.W., Yang, J. and Cao, G.M. (2021), "Prediction of the Charpy V-notch impact energy of low carbon steel using a shallow neural network and deep learning", Int. J. Minerals Metallurgy Mater., 28, 1-12. https://doi.org/10.1007/s12613-020-2168-z.
  48. Xu, H., Wang, X.Y., Liu, C.N., Chen, J.N. and Zhang, C. (2021a), "A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites", Soil Tillage Res., 212, 105074. https://doi.org/10.1016/j.still.2021.105074.
  49. Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2021b), "Study on strength behavior of basalt fiber-reinforced loess by Digital Image Technology (DIT) and Scanning Electron Microscope (SEM)", Arabian J. Sci. Eng., 1-20. https://doi.org/10.1007/s13369-021-05787-1.
  50. Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2021c), "Triaxial shear behavior of basalt fiber-reinforced loess based on Digital Image Technology", KSCE J. Civil Eng., https://doi.org/10.1007/s12205-021-2034-1.
  51. Yeh, I.C. (1998a), "Modeling concrete strength with augmentneuron networks", J. Mater. Civil Eng., 10(4), 263-268. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(263).
  52. Yeh, I.C. (1998b), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
  53. Yeh, I.C. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36).
  54. Yeh, I.C. (2003a), "A mix proportioning methodology for fly ash and slag concrete using artificial neural networks", Chung Hua J. Sci. Eng., 1(1), 77-84.
  55. Yeh, I.C. (2003b). "Prediction of strength of fly ash and slag concrete by the use of artificial neural networks", J Chin Inst Civil Hydraul Eng., 15(4), 659-663.
  56. Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597).
  57. Yi, H. (2021). "Secure social internet of things based on post-quantum blockchain", IEEE T. Network Sci. Eng., https://doi.org/10.1109/TNSE.2021.3095192.
  58. Zhan, Y., Liu, F., Ma, Z.J., Zhang, Z., Duan, Z. and Song, R. (2019). "Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges", Steel Compos. Struct., 30(6), 535-550. https://doi.org/10.12989/scs.2019.30.6.535.
  59. Zhang, C., Kordestani, H., Masri, S. F., Wang, J. and Sun, L. (2021), "Data-driven system parameter change detection for a chain-like uncertainties embedded structure", Struct. Control Health Monit., e2821. https://doi.org/10.1002/stc.2821.
  60. Zhang, J., Yao, Z., Wang, K., Wang, F., Jiang, H., Liang, M., Wei, J. and Airey, G. (2020), "Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review", Constr. Build. Mater., 121419. https://doi.org/10.1016/j.conbuildmat.2020.121419.
  61. Zhang, K., Wang, S., Bao, H. and Zhao, X. (2019), "Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China", Nat. Hazard. Earth Sys., 19(1), 93-105. https://doi.org/10.5194/nhess-19-93-2019.
  62. Zhao, R., Zhang, L., Fan, G., Chen, Y., Huang, G., Zhang, H., Zhu, J. and Guan, X. (2021a), "Probing the exact form and doping preference of magnesium in ordinary Portland cement clinker phases: A study from experiments and DFT simulations", Cement Concrete Res., 144, 106420. https://doi.org/10.1016/j.cemconres.2021.106420.
  63. Zhao, R., Zhang, L., Guo, B., Chen, Y., Fan, G., Jin, Z., Gua, X. and Zhu, J. (2021b), "Unveiling substitution preference of chromium ions in sulphoaluminate cement clinker phases", Compos. Part B: Eng., 109092. https://doi.org/10.1016/j.compositesb.2021.109092.