DOI QR코드

DOI QR Code

Cleaning Behavior of Aqueous Solution Containing Amine or Carboxylic Acid in Cu-interconnection Process

아민과 카르복실산이 함유된 수계용액의 구리 배선 공정의 세정특성

  • Ko, Cheonkwang (Gangwon Institute for Regional Program Evaluation) ;
  • Lee, Won Gyu (Division of Chemical Engineering and Bioengineering, Kangwon National University)
  • 고천광 ((재)강원지역사업평가단) ;
  • 이원규 (강원대학교 화공.생물공학부)
  • Received : 2021.04.09
  • Accepted : 2021.05.25
  • Published : 2021.11.01

Abstract

With the copper interconnection in the semiconductor process, complex residues including copper oxide, fluoride, and polymeric fluorocarbon are formed by plasma etching. In this study, a cleaning solution was prepared with a component having an amine group (-NH2) and a carboxyl group (-COOH), and the characteristics of removing post-etch residues in the copper wiring process were analyzed. In the cleaning solution containing an amine group, the length of the component substituted with nitrogen and the length of the carbon chain influenced the cleaning effect, and the etching rate of copper oxide increased as the pH of the cleaning solution increased. The activity of the amine group is in the basic region, and the activity of the carboxyl group is in the acidic region, and the cleaning process proceeds through complex formation with copper or copper oxide in each region.

반도체 공정에서 구리 배선 공정의 도입에 따라 플라즈마 식각에 의해 배선의 형성과정에서 구리 산화물, 불화물 및 불화탄소 등을 포함한 복합 잔류물을 형성하게 된다. 본 연구에서는 아민기(-NH2)와 카르복실기(-COOH)를 갖는 성분으로 세정액을 제조하여 구리 배선 공정에서의 식각 잔류물 제거 특성을 분석하였다. 아민기를 포함한 세정액은 질소에 치환된 성분 및 탄소결합의 길이에 따라 세정효과에 차이를 보이며, 세정액의 pH가 증가함에 따라 구리 산화물의 식각 속도가 증가하는 경향성을 보였다. 아민기의 활성은 염기성 영역에서, 카르복실기의 활성은 산성 영역에서 이루어지며, 각각의 영역에서 구리 또는 구리 산화물과의 complex 형성을 통하여 세정공정이 진행되었다.

Keywords

References

  1. Ryan, J. G., Geffken, R. M., Poulin,,N. R. and Paraszczak, J. R., "The Evolution of Interconnection Technology at IBM," IBM J. Res. Dev., 39(4), 371-381(1995). https://doi.org/10.1147/rd.394.0371
  2. Murarka, S. P. and Hymes, S. W., "Copper Metallization for ULSI and Beyond," Crit. Rev. Solid State Mater. Sci., 20(2), 87-124(1995). https://doi.org/10.1080/10408439508243732
  3. Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. and Deligianni, H., "Damascene Copper Electroplating for Chip Interconnections," IBM J. Res. Dev., 42(5), 567-574(1998). https://doi.org/10.1147/rd.425.0567
  4. Wang, Y., "Understanding of Via-Etch-Induced Polymer Formation and Its Removal," J. Electrochem. Soc., 144(4), 1522-1528(1997). https://doi.org/10.1149/1.1837621
  5. Judge, J. S., "A Study of the Dissolution of SiO2 in Acidic Fluoride Solutions," J. Electrochem. Soc., 118, 1772-1775(1971). https://doi.org/10.1149/1.2407835
  6. Imura, T., Mogi, K., Hiraki, A., Nakashima, S. and Mitsuishi, A., "Hydrogenated Crystalline Silicon Fabricated at Low-substrate Temperatures by Reactive Sputtering in He-H2 Atmosphere," Solid State Comm., 40(2), 161-164(1981). https://doi.org/10.1016/0038-1098(81)90158-7
  7. Trucks, G. W., Raghavachari, K., Higashi, G. S. and Chabal,Y. J., "Mechanism of HF Etching of Silicon Surfaces: A Theoretical Understanding of Hydrogen Passivation," J. Phys. Rev. Lett., 65(4), 504-507(1990). https://doi.org/10.1103/PhysRevLett.65.504
  8. Ko, C. K. and Lee, W. G., "Characteristics of Semi-Aqueous Cleaning Solution with Carboxylic Acid for the Removal of Copper Oxides Residues," Korean Chem. Eng. Res., 54(4), 548-554 (2016). https://doi.org/10.9713/kcer.2016.54.4.548
  9. Roberge, P. R., "Handbook of Corrosion Engineering," 1st ed., 500-502, McGraw-Hill, NY, USA(2000).
  10. Ko, C. K. and Lee, W. G., "Dissolution of Copper Oxide by the Ethanolamine and Ammonium Fluoride in Aqueous Solution," Surf. Interface Anal., 44, 94-97(2012). https://doi.org/10.1002/sia.3777
  11. Aksu, S. and Doyle, F. M., "Electrochemistry of Copper in Aqueous Ethylenediamine Solutions," J. Electrochem. Soc., 149(7), B340-B347(2002). https://doi.org/10.1149/1.1481067
  12. Sircar, S. C. and Wiles, D. R., "Kinetics of the Dissolution of Copper in Aqueous Solutions of Aliphatic Amines," J. Electrochem. Soc., 107, 164-167(1960). https://doi.org/10.1149/1.2427645
  13. Ko, C. K. and Lee, W. G., "Effects of pH Variation in Aqueous Solutions on Dissolution of Copper Oxide," Surf. Interface Anal., 42, 1128-1130(2010). https://doi.org/10.1002/sia.3238
  14. Macdougall, J., Reid, C. and McGhee, L., "Implications of the Selectiveness of Cu Chelators on Cu0, Cu(I)O and Cu(II)O Powders," Solid State Phenomena, 134, 329-332(2008). https://doi.org/10.4028/www.scientific.net/SSP.134.329
  15. Gorantla, V. R. K., Goia, D., Matijevic, E. and Babu, S. V., "Role of Amine and Carboxyl Functional Groups of Complexing Agents in Slurries for Chemical Mechanical Polishing of Copper," J. Electrochem. Soc., 152, G912-G916(2005). https://doi.org/10.1149/1.2083287
  16. Gorantla, V. R. K., Goia, D., Matijevic, E. and Babu, S. V., "Amino Acids as Complexing Agents in Chemical-Mechanical Planarization of Copper," Chem. Mater., 17(8), 2076-2080(2005). https://doi.org/10.1021/cm048478f
  17. Hernandez, J., Wrschka, P. and Oehrlein, G. S., "Surface Chemistry Studies of Copper Chemical Mechanical Planarization," J. Electrochem. Soc., 148(7), B389-G397(2001).
  18. Carter, M. K., Small, R., Cernat, M. and Hansen, B., "Effects of Amine Fluoride Cleaning Chemistry on Metallic Aluminum Integrated Circuit Films : I. Experimental Measurements and Chemical Modeling," J. Electrochem. Soc., 150(2), B52-B59(2003). https://doi.org/10.1149/1.1536992