DOI QR코드

DOI QR Code

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian (School of Nuclear Engineering, Shanghai Jiao Tong University) ;
  • Qu, Wenhai (School of Nuclear Engineering, Shanghai Jiao Tong University) ;
  • Xiong, Jinbiao (School of Nuclear Engineering, Shanghai Jiao Tong University)
  • Received : 2019.12.11
  • Accepted : 2021.05.27
  • Published : 2021.11.25

Abstract

The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.

Keywords

References

  1. S.K. Chang, S.K. Moon, W.P. Baek, Y.D. Choi, Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices, Nucl. Eng. Des. 238 (2008) 600-609. https://doi.org/10.1016/j.nucengdes.2007.02.037
  2. S.K. Chang, S. Kim, C.H. Song, Turbulent mixing in a rod bundle with vaned spacer grids: OECD/NEAeKAERI CFD benchmark exercise test, Nucl. Eng. Des. 279 (2014) 19-36. https://doi.org/10.1016/j.nucengdes.2014.05.013
  3. S.Y. Han, J.S. Seo, M.S. Park, Y.D. Choi, Measurements of the flow characteristics of the lateral flow in the 6×6 rod bundles with Tandem Arrangement Vanes, Nucl. Eng. Des. 239 (2009) 2728-2736. https://doi.org/10.1016/j.nucengdes.2009.09.026
  4. J. Xiong, N. Yu, Y. Yu, X. Fu, X. Cheng, Y. Yang, Experimental investigation on anisotropic turbulent flow in a 6×6 rod bundle with LDV, Nucl. Eng. Des. 278 (2014) 333-343. https://doi.org/10.1016/j.nucengdes.2014.08.004
  5. M.E. Conner, Y.A. Hassan, E.E. Dominguez-Ontiveros, Hydraulic benchmark data for PWR mixing vane grid, Nucl. Eng. Des. 264 (2013) 97-102. https://doi.org/10.1016/j.nucengdes.2012.12.001
  6. E. Dominguez-Ontiveros, Y.A. Hassan, Experimental study of a simplified 3×3 rod bundle using DPTV, Nucl. Eng. Des. 279 (2014) 50-59. https://doi.org/10.1016/j.nucengdes.2014.04.037
  7. E.E. Dominguez-Ontiveros, Y.A. Hassan, M.E. Conner, Z. Karoutas, Experimental benchmark data for PWR rod bundle with spacer grids, Nucl. Eng. Des. 253 (2012) 396-405. https://doi.org/10.1016/j.nucengdes.2012.09.003
  8. Michael E. Conner, Carlos E. Estrada-Perez, Elvis Dominguez-Ontiveros, Y.A. Hassan, Demonstration of Advanced Hyudraulic Benchmark Data for PWR Mixing Vane Grid, Westinghouse Electric Company LLC, 2016.
  9. T. Nguyen, Y. Hassan, Stereoscopic particle image velocimetry measurements of flow in a rod bundle with a spacer grid and mixing vanes at a low Reynolds number, Int. J. Heat Fluid Flow 67 (2017) 202-219. https://doi.org/10.1016/j.ijheatfluidflow.2017.08.011
  10. H.L. McClusky, M.V. Holloway, D.E. Beasley, M.E. Conner, Development of swirling flow in a rod bundle subchannel, J. Fluid Eng. 124 (2002) 747-755. https://doi.org/10.1115/1.1478066
  11. H.L. McClusky, M.V. Holloway, T.A. Conover, D.E. Beasley, M.E. Conner, L.D. Smith, Mapping of the lateral flow field in typical subchannels of a support grid with vanes, J. Fluid Eng. 125 (2003) 987. https://doi.org/10.1115/1.1625688
  12. D. Hille, B. Schrodel, I. Ganzmann, H. Schmidt, PIV (Particle Image Velocimetry) measurements for detection of the crossflow distribution downstream of 5×5 test spacer grids, in: The 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-15. Pisa, Italy, May 12-17, 2013, 2013.
  13. C.H. Shin, Y. Lee, in: K. W (Ed.), IAEA Benchmark Specifications and Experimental Data: Flow Mixing in a 4x4 Rod bundle with a Mixing Vane Spacer Grid, 2015.
  14. Michael E. Conner, Carlos E. Estrada-Perez, Elvis Dominguez-Ontiveros, Y.A. Hassan, Demonstration of Advanced Hyudraulic Benchmark Data for PWR Mixing Vane Grid, Westinghouse Electric Company LLC, 2016.
  15. W. Qu, J. Xiong, S. Chen, X. Cheng, High-fidelity PIV measurement of crossflow in 5×5 rod bundle with mixing vane grids, Nucl. Eng. Des. 344 (2019) 131-143. https://doi.org/10.1016/j.nucengdes.2019.01.021
  16. W. Qu, J. Xiong, S. Chen, Z. Qju, J. Deng, X. Cheng, PIV measurement of turbulent flow downstream of mixing vane spacer grid in 5×5 rod bundle, Ann. Nucl. Energy 132 (2019) 277-287. https://doi.org/10.1016/j.anucene.2019.04.016
  17. S.K. Chang, S. Kim, C.H. Song, OECD/NEA - KAERI Rod Bundle CFD Benchmark Exercise Test, CFD for Nuclear Safety, Daejon, Korea, 2012. S04#01.
  18. S.K. Kang, Y.A. Hassan, Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle, Nucl. Eng. Des. 301 (2016) 204-231. https://doi.org/10.1016/j.nucengdes.2016.03.007
  19. J. Xiong, R. Cheng, C. Lu, X. Chai, X. Liu, X. Cheng, CFD simulation of swirling flow induced by twist vanes in a rod bundle, Nucl. Eng. Des. 338 (2018) 52-62. https://doi.org/10.1016/j.nucengdes.2018.08.003
  20. W. Qu, Z. Wang, J. Xiong, X. Cheng, Experimental study of crossflow and lateral pressure drop in a 5×5 rod bundle wit mixing vanes spacer grid, Nucl. Eng. Des. 235 (2019).
  21. Star-CCM+ User Manual.
  22. Xiong, J., Yu, N., Yu, Y., Fu, X., Cheng, X., Yang, Y., Experimental Investigation on Anisotropic Turbulent Flow in a 6x6 Rod Bundle.
  23. M.M. Gibson, B.E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech. 86 (1978) 491-511. https://doi.org/10.1017/S0022112078001251
  24. P.K. Selvam, R. Kulenovic, E. Laurien, Large eddy simulation on thermal mixing of fluids in a T-junction with conjugate heat transfer, Nucl. Eng. Des. 284 (2015) 238-246. https://doi.org/10.1016/j.nucengdes.2014.12.025
  25. B. Mikuz, I. Tiselj, Wall-resolved Large Eddy Simulation in grid free 5×5 rod bundle of MATiS-H experiment, Nucl. Eng. Des. 298 (2016) 64-77. https://doi.org/10.1016/j.nucengdes.2015.12.021