DOI QR코드

DOI QR Code

Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code

  • Demir, Nilgun (Bursa Uludag University, Faculty of Arts and Sciences, Physics Department) ;
  • Kuluozturk, Zehra Nur (Bitlis Eren University, Vocational School of Health Services)
  • Received : 2020.11.23
  • Accepted : 2021.05.13
  • Published : 2021.11.25

Abstract

In this study, 3" × 3" NaI(Tl) detector, which is widely used in gamma spectroscopy, was modeled with FLUKA code, and calculations required to determine the detector's energy resolution were reported. Photon beams with isotropic distribution with 59, 81, 302, 356, 511, 662, 835, 1173, 1275, and 1332 keV energy were used as radiation sources. The photon pulse height distribution of the NaI(Tl) without influence of its energy resolution obtained with FLUKA code has been converted into a real NaI(Tl) response function, using the necessary conversion process. The photon pulse height distribution simulated in the conversion process was analyzed using the ROOT data analysis framework. The statistical errors of the simulated data were found in the range of 0.2-1.1%. When the results, obtained with FLUKA and ROOT, are compared with the literature data, it is seen that the results are in good agreement with them. Thus, the applicability of this procedure has been demonstrated for the other energy values mentioned.

Keywords

References

  1. K. Debertin, R.G. Helmer, Gamma- and X-Ray Spectrometry with Semiconductor Detectors, North-Holland, Netherlands, 1988.
  2. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, Inc., K, 2000. https://phyusdb.files.wordpress.com/2013/03/radiationdetectionandmeasurementbyknoll.pdf.
  3. S. Breur, The Performance of NaI(Tl) Scintillation Detectors: for Determining the Decay Rate of Radioactive Sources in a Modulation Experiment. Master Thesis - Physics, University of Amsterdam, NIKHEF, 2013. https://wiki.nikhef.nl/detector/pub/Main/ArticlesAndTalks/Master_Thesis_PA_Breur.pdf.
  4. R. Casanovas, J.J. Morant, M. Salvado, Energy and resolution calibration of NaI(Tl) and LaBr3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations, Nucl. Instrum. Methods A 675 (2012) 78-83, https://doi.org/10.1016/j.nima.2012.02.006.
  5. J.H. Kim, J. Lee, Y. Kim, H.S. Lee, C.H. Kim, Development of hybrid shielding system for large-area Compton camera: a Monte Carlo study, Nuclear Engineering and Technology 52 (2020) 2361-2369, https://doi.org/10.1016/j.net.2020.04.003.
  6. M.T. Hajheidari, M.J. Safari, H. Afarideh, H. Rouhi, Experimental validation of response function of a NaI(Tl) detector modeled with Monte Carlo codes, J. Instrum. 11 (6) (2016) P06011. https://doi:10.1088/1748-0221/11/06/P06011.
  7. Urkiye Akar Tarim, Orhan Gurler, Source-to-detector distance dependence of efficiency and energy resolution of a 3"x3" NaI(Tl) detector, Eur. J. Sci. Technol. 13 (2018) 103-107, https://doi.org/10.31590/ejosat.443565.
  8. H. Vincke, E. Gschwendtner, C.W. Fabjan, T. Otto, Response of a BGO detector to photon and neutron sources: simulations and measurements, Nucl. Instrum. Methods A 484 (2002) 102-110, https://doi.org/10.1016/S0168-9002(01)01966-0.
  9. H.-X. Shi, B.-X. Chen, T.-Z. Li, D. Yun, Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector, Appl. Radiat. Isot. 57/4 (2002) 517-524, https://doi.org/10.1016/s0969-8043(02)00140-9.
  10. C.M. Salgado, L.E.B. Brand~ ao, R. Schirru, C.M.N.A. Pereira, C.C. Conti, Validation of a NaI(Tl) detector's model developed with MCNP-X code, Prog. Nucl. Energy 59 (2012) 19-25. https://doi:10.1016/j.pnucene.2012.03.006.
  11. Hoang Duc Tam, Huynh Dinh Chuong, Tran Thien Thanh, Chau Van Tao, A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector, Radiat. Phys. Chem. 125 (2016) 88-93, https://doi.org/10.1016/j.radphyschem.2016.03.020.
  12. I. Mouhti, A. Elanique, M.Y. Messous, Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code, J. Mater. Environ. Sci. 8/12 (2017) 4560-4565. http://www.jmaterenvironsci.com/Document/vol9/vol8_N12/481-JMES-2834-Mouhti.pdf.
  13. Hoang Duc Tam, Nguyen Thi Hai Yen, Le Bao Tran, Huynh Dinh Chuong, Tran Thien Thanh, Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code, Appl. Radiat. Isot. 130 (2017) 75-79, https://doi.org/10.1016/j.apradiso.2017.09.020.
  14. Minho Kim, Bong Hwan Hong, Ilsung Cho, Chawon Park, Sun-Hong Min, Won Taek Hwang, Wonho Lee, Kyeong Min Kim, Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: comparison of SrI2 and GAGG using Monte-Carlo simulation, Nuclear Engineering and Technology 53/2 (2021) 626-636, https://doi.org/10.1016/j.net.2020.07.010.
  15. I. Akkurt, K. Gunoglu, S.S. Arda, Detection efficiency of NaI(Tl) detector in 511-1332 keV energy range, Science and Technology of Nuclear Installations (2014) 186798, https://doi.org/10.1155/2014/186798.
  16. Alfredo Ferrari, Paola R. Sala, Alberto Fasso, Johannes Ranft, FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-77, https://doi.org/10.5170/CERN-2005-010.
  17. V. Vlachoudis, FLAIR: a powerful but user friendly graphical interface for FLUKA. Proc. Int. Conf. On mathematics, computational methods & reactor physics (M&C 2009), Saratoga Springs, New York, 2009, 2009, http://flair.web.cern.ch/flair/doc/Flair_MC2009.pdf.
  18. Huseyin Ozan Tekin, MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data, Science and Technology of Nuclear Installations. https://doi.org/10.1155/2016/6547318, 2016.
  19. R. Brun, F. Rademachers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Methods A 389 (1-2) (1997) 81-86, https://doi.org/10.1016/S0168-9002(97)00048-X (1997).
  20. G.F. Knoll, Radiation Detection and Measurement, fourth ed., John Wiley & Sons, New York, 2010.