DOI QR코드

DOI QR Code

Low-frequency suppression strategy based on predictive control model for modular multilevel converters

  • Wang, Lianqiang (School of Electrical Engineering, Dalian University of Technology) ;
  • Zhang, Li (School of Electrical Engineering, Dalian University of Technology) ;
  • Xiong, Yongsheng (School of Electrical Engineering, Dalian University of Technology) ;
  • Ma, Rui (School of Electrical Engineering, Dalian University of Technology)
  • Received : 2021.04.01
  • Accepted : 2021.07.15
  • Published : 2021.10.20

Abstract

Modular multilevel converters (MMCs) have attracted a great deal of research attention in medium-voltage motor drive applications. However, the excessive fundamental-frequency submodule (SM) capacitor voltage ripple at low speeds or during start-up poses a major technological challenge. This paper develops a new control strategy for SM capacitor voltage ripple suppression based on model predictive control (MPC). The system mathematical model with common-mode voltage (CMV) and the SM capacitor voltage ripple suppression models are established. Then, a cost function of the system is established, and the control system is designed. When compared to existing strategies, the modulation process, PI regulation process, and high frequency injection control are avoided due to the MPC strategy. The performance of the proposed approach is verified through MATLAB simulations and experiments on a MMC system.

Keywords

References

  1. Abu-Rub, H., Holtz, J., Rodriguez, J., Baoming, G.: Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications. IEEE Trans. Industr. Electron. 57(8), 2581-2596 (2010) https://doi.org/10.1109/TIE.2010.2043039
  2. Bosworth, M., Soto, D., Sloderbeck, M., Hauer J., Steurer M.: "MW-scale power hardware-in-the-loop experiments of rapid power transfers in MVDC naval shipboard power systems," in Proc. 2015 IEEE Electric Ship Technologies Symposium (ESTS), 459-463 (2015). https://doi.org/10.1109/ESTS.2015.7157904
  3. Tai, B., Gao, C., Liu, X., Chen, Z.: A novel flexible capacitor voltage control strategy for variable-speed drives with modular multilevel converters. IEEE Trans. Power Electron. 32(1), 128-141 (2017) https://doi.org/10.1109/TPEL.2016.2535463
  4. Ronanki, D., Williamson, S.S.: Modular multilevel converters for transportation electrification: challenges and opportunities. IEEE Trans. Transp. Electrifc. 4(2), 399-407 (2018) https://doi.org/10.1109/TTE.2018.2792330
  5. Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Topics Power Electron. 5(4), 1631-1656 (2017) https://doi.org/10.1109/JESTPE.2017.2742938
  6. Spichartz, M., Staudt V., Steimel A.: "Analysis of the module-voltage fluctuations of the Modular Multilevel Converter at variable speed drive applications," in Proc. 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 751-758 (2012). https://doi.org/10.1109/OPTIM.2012.6231806
  7. Wang, Z., Chen, J., Liao, K., Xiong, J., Zhang, K.: Review on low-frequency ripple suppression methods for MMCs for medium-voltage drive applications. IET Power Electron. 11(15), 2403-2414 (2018) https://doi.org/10.1049/iet-pel.2018.5657
  8. Kolb, J., Kammerer, F., Gommeringer, M., Braun, M.: Cascaded control system of the modular multilevel converter for feeding variable-speed drives. IEEE Trans. Power Electron. 30(1), 349-357 (2015) https://doi.org/10.1109/TPEL.2014.2299894
  9. Antonopoulos, A., Angquist, L., Norrga, S., Ilves, K., Harnefors, L., Nee, H.: Modular multilevel converter AC motor drives with constant torque from zero to nominal speed. IEEE Trans. Ind. Appl. 50(3), 1982-1993 (2014) https://doi.org/10.1109/TIA.2013.2286217
  10. Espinoza-B, M., et al.: An Integrated converter and machine control system for MMC-based high-power drives. IEEE Trans. Ind. Electron. 66(3), 2343-2354 (2019) https://doi.org/10.1109/tie.2018.2801839
  11. Bao, L., Yang, H., Gu, X., Zhao, R.: "An Improved Low-Frequency Ripple Suppression Method for Modular Multilevel Converter in Variable-Speed Motor Drive Application," in Proc. 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), 593-596 (2020). https://doi.org/10.23919/ICEMS50442.2020.9290825
  12. Song, S., Liu, J., Ouyang, S., Chen, X.: "An improved high-frequency common-mode voltage injection method in modular multilevel converter in motor drive application," in Proc. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2496-2500 (2018). https://doi.org/10.1109/APEC.2018.8341368
  13. Al Sabbagh, M., Rehman, H., Pan, J., Xu, L.: Suppressing the capacitor voltage fluctuations in low frequency operation of modular multilevel converters. IEEE Access 8, 46141-46150 (2020) https://doi.org/10.1109/access.2020.2978916
  14. Zhao, F., Xiao, G., Zhu, T., Zheng, X., Wu, Z., Zhao, T.: A coordinated strategy of low-speed and start-up operation for medium-voltage variable-speed drives with a modular multilevel converter. IEEE Trans. Power Electron. 35(1), 709-724 (2020) https://doi.org/10.1109/tpel.2019.2913696
  15. Li, B., Zhou, S., Xu, D., Yang, R., Xu, D., Buccella, C., Cecati, C.: An improved circulating current injection-method formodular multilevel converters in variable-speed drives. IEEE Trans. Industr. Electron. 63(11), 7215-7225 (2016) https://doi.org/10.1109/TIE.2016.2547899
  16. He, L., Zhang, K., Xiong, J., Fan, S., Xue, Y.: Low-frequency ripple suppression formedium-voltage drives using modular multilevel converter with full-bridge submodules. IEEE J. Emerg. Sel. Topics Power Electron. 04(2), 657-667 (2016) https://doi.org/10.1109/JESTPE.2015.2477433
  17. Du, S., Wu, B., Tian, K., Zargari, N.R., Cheng, Z.: An active cross-connected modular multilevel converter (AC-MMC) for a medium-voltage motor drive. IEEE Trans. Industr. Electron. 63(8), 4707-4717 (2016) https://doi.org/10.1109/TIE.2016.2547875
  18. Du, S., Wu, B., Zargari, N.R.: Current stress reduction for flying-capacitor modular multilevel converter. IEEE Trans. Power Electron. 34(1), 184-191 (2019) https://doi.org/10.1109/TPEL.2018.2827947
  19. Le Dung, D., Lee, D.-C.: Reduction of half-arm current stresses and flying-capacitor voltage ripples of flying-capacitor MMCs. IEEE Access 8, 180076-180086 (2020) https://doi.org/10.1109/access.2020.3027844
  20. Du, S., Wu, B., Zargari, N.R., Cheng, Z.: A flying-capacitor modular multilevel converter for medium-voltage motor drive. IEEE Trans. Power Electron. 32(3), 2081-2089 (2017) https://doi.org/10.1109/TPEL.2016.2565510
  21. Du, S., Wu, B., Zargari, N.R.: A star-channel modular multilevel converter for zero/low-fundamental-frequency operation without injecting common-mode voltage. IEEE Trans. Power Electron. 33(4), 2857-2865 (2018) https://doi.org/10.1109/tpel.2017.2701905
  22. Du, S., Wu, B., Zargari, N.: Delta-channel modular multilevel converter for a variable-speed motor drive application. IEEE Trans. Industr. Electron. 65(8), 6131-6139 (2018) https://doi.org/10.1109/TIE.2018.2793212

Cited by

  1. Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects vol.14, pp.18, 2021, https://doi.org/10.3390/en14185773