DOI QR코드

DOI QR Code

Soft-switching modulation algorithm-based reconfiguration of cascaded H-bridge inverters under DC source failures

  • Xiong, Jinfei (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Zhou, Fulin (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Li, Qunzhan (School of Electrical Engineering, Southwest Jiaotong University)
  • Received : 2021.01.05
  • Accepted : 2021.04.07
  • Published : 2021.07.20

Abstract

Cascaded H-bridge inverters with separated DC sources charging the DC-link are widely used in the industry application due to its inherent advantages. However, a failure of the DC sources can interrupt the power supply which results in economic loss. This paper proposes a soft-switching modulation algorithm to tackle this issue. A pre-set table lists all of the possible redundant module states that can adjust the voltage of the DC-link. With this method, the DC voltages can be always balanced even under DC source failures, resulting in good flexibility, good dynamic performance and no voltage level-skip. Hence, a reliable and continuous power supply is guaranteed. Finally, 3-module experimental results verify the validity of the proposed method and simulation tests are used to verify its balance limitations.

Keywords

References

  1. VanWyk, J.D., Lee, F.C.: On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59-72 (2013) https://doi.org/10.1109/JESTPE.2013.2271499
  2. Dahidah, M.S.A., Konstantinou, G., Agelidis, V.G.: A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and application. IEEE Trans. Power Electron. 30(8), 4091-4106 (2015) https://doi.org/10.1109/TPEL.2014.2355226
  3. Sun, X., Hu, C., Lei, G., et al.: Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans. Veh. Technol. 69(5), 4968-4978 (2020) https://doi.org/10.1109/tvt.2020.2981422
  4. Zhao, T.F., Wang, G.Y., Bhattacharya, S., et al.: Voltage and power balance control for a cascaded H-bridge converter-based Solid-State transformer. IEEE Trans. Power Electron. 28(4), 1523-1532 (2013) https://doi.org/10.1109/TPEL.2012.2216549
  5. Peng, X., He, X.Q., Han, P.C., et al.: Sequence pulse modulation for voltage balance in a cascaded H-bridge rectifier. J. Power Electron. 17(3), 664-673 (2017) https://doi.org/10.6113/JPE.2017.17.3.664
  6. Townsend, C.D., Summers, T.J., Betz, R.E.: Multigoal heuristic model predictive control technique applied to a cascaded H-bridge StatCom. IEEE Trans. Power Electron. 27(3), 1191-1200 (2012) https://doi.org/10.1109/TPEL.2011.2165854
  7. Wang, S., Crosier, R., Chu, Y.: Investigating the power architectures and circuit topologies for megawatt superfast electric vehicle charging stations with enhanced grid support functionality. In Proceedings of the international conference on IEEE electric vehicle, Greenville, SC. pp. 1-8 (2012)
  8. Sun, X., Kai, M., Lei, G., et al.: An improved model predictive current control for PMSM drives based on current track circle. IEEE Trans. Ind. Electron. 68(5), 3782-3793 (2021) https://doi.org/10.1109/TIE.2020.2984433
  9. Miranbeigi, M., Iman-Eini, H.: Hybrid modulation technique for grid-connected cascaded photovoltaic systems. IEEE Trans. Ind. Electron. 63(12), 7843-7853 (2016) https://doi.org/10.1109/TIE.2016.2580122
  10. Dahidah, M.S.A., Agelidis, V.G.: Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: a generalized formula. IEEE Trans. Power Electron. 23(4), 1620-1630 (2008) https://doi.org/10.1109/TPEL.2008.925179
  11. Aleenejad, M., Mahmoudi, H., Moamaei, P., et al.: A new fault tolerant strategy based on a modified selective harmonic technique for three-phase multilevel converters with a single faulty cell. IEEE Trans. Power Electron. 31(4), 3141-3150 (2016) https://doi.org/10.1109/TPEL.2015.2444661
  12. Dabbaghjamanesh, M., Moeini, A., Ashkaboosi, M., et al.: High performance control of grid connected cascaded H-Bridge active rectifier based on type II-fuzzy logic controller with low frequency modulation technique. Int. J. Electr. Comput. Eng. 6(2), 484-494 (2016) https://doi.org/10.11591/ijece.v6i2.pp484-494
  13. Franquelo, L.G., Napoles, J., Guisado, R.C.P., et al.: A flexible selective harmonic mitigation technique to meet grid codes in three-level PWM rectifiers. IEEE Trans. Ind. Electron. 54(6), 3022-3029 (2007) https://doi.org/10.1109/TIE.2007.907045
  14. Marzoughi, A., Imaneini, H., Moeini, A.: An optimal selective harmonic mitigation technique for high power converters. Int. J. Electr. Power Energy Syst. 49, 34-39 (2013) https://doi.org/10.1016/j.ijepes.2012.12.007
  15. Najjar, M., Moeini, A., Bakhshizadeh, M.K., et al.: Optimal selective harmonic mitigation technique on variable DC link cascaded H-bridge converter to meet power quality standards. IEEE J. Emerg. Sel. Topics Power Electron. 4(3), 1107-1116 (2016) https://doi.org/10.1109/JESTPE.2016.2555995
  16. Moeini, A., Zhao, H., Wang, S.: A current-reference-based selective harmonic current mitigation PWM technique to improve the performance of cascaded H-bridge multilevel active rectifiers. IEEE Trans. Ind. Electron. 65(1), 727-737 (2018) https://doi.org/10.1109/TIE.2016.2630664
  17. Holmes, D.G., Lipo, T.A.: Pulse width modulation for power converters: principles and practice. Wiley, New York, NY (2003)
  18. Moeini, A., Hui, Z., Wang, S.: High efficiency, hybrid Selective Harmonic Elimination phase-shift PWM technique for Cascaded H-Bridge inverters to improve dynamic response and operate in complete normal modulation indices. In: IEEE applied power electronics conference and exposition (APEC), pp. 2019-2026 (2016)
  19. Aleenejad, M., Iman-Eini, H., Farhangi, S.: Modified space vector modulation for fault-tolerant operation of multilevel cascaded Hbridge inverters. IET Power Electron. 6(4), 742-751 (2013) https://doi.org/10.1049/iet-pel.2012.0543
  20. Moeini, A., Iman-Eini, H., Marzoughi, A.: DC link voltage balancing approach for cascaded H-bridge active rectifier based on selective harmonic elimination-pulse width modulation. IET Power Electron. 8(4), 583-590 (2015) https://doi.org/10.1049/iet-pel.2014.0086
  21. Kouro, S., Wu, B., Moya, A., et al.: Control of a cascaded H-bridge multilevel converter for grid connection of photovoltaic systems. In: 35th annual conference of ieee industrial electronics, pp. 3976-3982 (2009)
  22. Malinowski, M., Gopakumar, K., Rodriguez, J., et al.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197-2260 (2010) https://doi.org/10.1109/TIE.2009.2030767
  23. Angulo, M., Lezana, P., Kouro, S., et al.: Level-shifted PWM for cascaded multilevel inverters with even power distribution. In: IEEE power electronics specialists conference, pp. 2373-2378 (2007)
  24. Shi, T.C., He, Y.G., Wang, T., et al.: An improved open-switch fault diagnosis technique of a PWM voltage source rectifier based on current distortion. IEEE Trans. Power Electron 34(12), 12212-12225 (2019) https://doi.org/10.1109/tpel.2019.2905296
  25. Song, Y.T., Wang, B.S.: Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 1(2), 59-72 (2013)
  26. Sun, X., Jin, Z., Cai, Y., et al.: Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans. Power Electron. 26(12), 13631-13640 (2020)
  27. X. Lin, X. Peng, P. Han, X. He., et al.: Control strategy of single-phase 3LNPC-CR. In Proceedings of IFEEC-ECCE Asia, pp. 1071-1077. (2017).
  28. She, X., Huang, A.Q., Wang, G.: 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Trans. Power Electron. 26(12), 3778-3789 (2011) https://doi.org/10.1109/TPEL.2011.2142422
  29. Dujic, D., Zhao, C.H., Mester, A., Steinke, J.K., et al.: Power electronic traction transformer-low voltage prototype. IEEE Trans. Power Electron. 28(12), 5522-5534 (2013) https://doi.org/10.1109/TPEL.2013.2248756
  30. Moosavi, M., Farivar, G., Iman-Eini, H., et al.: A voltage balancing strategy with extended operating region for cascaded H-bridge converters. IEEE Trans. Power Electron. 29(9), 5044-5053 (2014) https://doi.org/10.1109/TPEL.2013.2286270
  31. Peng, X., He, X., Han, P., Lin, H., Gao, S., Shu, Z.: Opposite vector based phase shift carrier space vector pulse width modulation for extending the voltage balance region in single-phase 3LNPC cascaded rectifier. IEEE Trans. Power Electron. 32(9), 7381-7393 (2017) https://doi.org/10.1109/TPEL.2016.2611607
  32. He X., Yu H., Han P., Zhao Z., Peng X., Shu Z., Koh L., Wang P,: Fixed and smooth-switch-sequence modulation for voltage balancing based on single-phase three-level neutral point clamped cascaded rectifier. IEEE Trans. Ind. Appl. (2020) early access.