DOI QR코드

DOI QR Code

Numerical junction temperature calculation method for reliability evaluation of power semiconductors in power electronics converters

  • Du, Xiao (The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University) ;
  • Du, Xiong (The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University) ;
  • Zhang, Jun (College of Energy and Electrical Engineering, Hohai University) ;
  • Li, Gaoxian (The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University)
  • 투고 : 2020.05.29
  • 심사 : 2020.09.04
  • 발행 : 2021.01.20

초록

The junction temperature of power semiconductors is a critical parameter during reliability evaluation. The incorporation of long-term mission profiles, such as power loadings and ambient temperature, into lifetime and reliability evaluations of power semiconductors increases the computational burden. Thus, there is an urgent need for a more accurate method for junction temperature acquisition. Current methods for junction temperature calculation are computationally inefficient and do not comprehensively incorporate long-term factors into junction temperature calculation and power semiconductor reliability evaluation. Here, a junction temperature calculation method is proposed that enables reliability evaluation for insulated gate bipolar transistor (IGBT) power semiconductors. This approach calculates the IGBT module junction temperature on the basis of an electro-thermal analogy using Gauss-Seidel iteration. When compared with electrical-thermal simulation and other numerical calculation methods, the proposed method guarantees accuracy, while greatly reducing the computational time and load. A performance comparison between the proposed method, electro-thermal simulation based on a Fuji IGBT simulator, and experimental results was carried out using a three-phase DC/AC inverter as a case study.

키워드

과제정보

This work was supported by the Nature Science Foundation Key Project of Chongqing in China under Grant cstc2019jcyj-zdxmX0005.

참고문헌

  1. Iwamura, N., Laska, T.: IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron Devices 64(3), 741-752 (2017) https://doi.org/10.1109/TED.2017.2654599
  2. Zorn, C., Kaminski, N.: Temperature-humidity-bias testing on insulated-gate bipolartransistor modules-failure modes and acceleration due to high voltage. IET Power Electron. 8(12), 2329-2335 (2015) https://doi.org/10.1049/iet-pel.2015.0031
  3. Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  4. Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Rel. 42(45), 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
  5. Wang, H., Liserre, M., Blaabjerg, F.: Toward reliable power electronics: challenges design tools and opportunities. IEEE Ind. Electron. Mag. 7(2), 17-26 (2013) https://doi.org/10.1109/MIE.2013.2252958
  6. Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-a review. IEEE Trans. Power Electron. 27(6), 3081-3092 (2012) https://doi.org/10.1109/TPEL.2011.2178433
  7. Bahman, A.S., Ma, K., Blaabjerg, F.: A lumped thermal model including thermal coupling and thermal boundary conditions for high-power IGBT modules. IEEE Trans. Power Electron. 33(3), 2518-2530 (2018) https://doi.org/10.1109/TPEL.2017.2694548
  8. Stella, F., Pellegrino, G., Armando, E., et al.: Online junction temperature estimation of SiC power mosfets through on-state voltage mapping. IEEE Trans. Ind. Appl. 54(4), 3453-3462 (2018) https://doi.org/10.1109/tia.2018.2812710
  9. Perpina, X., Serviere, J.F., Saiz, J., et al.: Temperature measurement on series resistance and devices in power packs based on on-state voltage drop monitoring at high current. Microelectron. Rel. 46(9-11), 1834-1839 (2006) https://doi.org/10.1016/j.microrel.2006.07.078
  10. Sathik, M. H. M., Pou, J., Prasanth, S., et al.: Comparison of IGBT junction temperature measurement and estimation methods-a review. Asian Conference on Energy, Power and Transportation Electrifcation, 1-8 (2017)
  11. Grifo, A., Wang, J., Colombage, K., et al.: Real-time measurement of temperature sensitive electrical parameters in SiC power MOSFETs. IEEE Trans. Ind. Electron. 65(3), 2663-2671 (2017) https://doi.org/10.1109/tie.2017.2739687
  12. Carubelli, S., Khatir, Z.: Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions. Microelectron. J. 34(12), 1143-1151 (2003) https://doi.org/10.1016/S0026-2692(03)00205-2
  13. Niu, H., Lorenz, R.D.: Evaluating different implementations of online junction temperature sensing for switching power semiconductors. IEEE Trans. Ind. Appl. 53(1), 391-401 (2016) https://doi.org/10.1109/TIA.2016.2614773
  14. Elefendi, M.A., Johnson, C.M.: Application of Kalman filter to estimate junction temperature in IGBT power modules. IEEE Trans. Power Electron. 31(2), 1576-1587 (2015) https://doi.org/10.1109/TPEL.2015.2418711
  15. Li, H., Xiang, D., Yang, X., et al.: Compressed sensing method for IGBT high-speed switching time on-line monitoring. IEEE Trans. Ind. Electron. 66(4), 3185-3195 (2018) https://doi.org/10.1109/tie.2018.2847647
  16. Ye, J., Yang, K., Ye, H., et al.: A fast electro-thermal model of traction inverters for electrifed vehicles. IEEE Trans. Power Electron. 32(5), 3920-3934 (2016) https://doi.org/10.1109/TPEL.2016.2585526
  17. Cottet, D., Drofenik, U., Meyer, J. M.: A systematic design approach to thermal-electrical power electronics integration. Proceedings of Electron. Syst.-Integr. Technol. Conf., September, pp 219-224 (2008)
  18. Kojima, T., Yamada, Y., Nishibe, Y., et al.: Novel RC compact thermal model of HV inverter module for electro-thermal coupling simulation. Proceedings of Power Conversion Conference, pp 1025-1029 (2007)
  19. Qian, C., Gheitaghy, A.M., Fan, J., et al.: Thermal management on IGBT power electronic devices and modules. IEEE Access 6, 12868-12884 (2018) https://doi.org/10.1109/access.2018.2793300
  20. Fuji IGBT Modules Application Manual, [online] www.fujielectric.com (2004)
  21. Xu, D., Lu, H., Huang, L., et al.: Power loss and junction temperature analysis of power semiconductor devices. IEEE Trans. Ind. Appl. 38(5), 1426-1431 (2002) https://doi.org/10.1109/TIA.2002.802995
  22. Wintrich, A., Nicolai, U., Tursky, W., Reimann, T.: Application Manual Power Semiconductors. Semikron, Nuremberg (2011)
  23. Zhou, Z., Kanniche, M.S., Butcup, S.G., et al.: High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 5(8), 636-643 (2011) https://doi.org/10.1049/iet-epa.2011.0048
  24. Zhang, Y., Wang, H., Wang, Z., et al.: Computational-efficient thermal estimation for IGBT modules under periodic power loss profles in modular multilevel converters. IEEE Trans. Ind. Appl. 55(5), 4984-4992 (2019) https://doi.org/10.1109/tia.2019.2925590
  25. Zhang, Y., Wang, H., Wang, Z., et al.: A simplification method for power device thermal modeling with quantitative error analysis. IEEE J Emerg Sel Topics Power Electron 7(3), 1649-1658 (2019) https://doi.org/10.1109/jestpe.2019.2916575
  26. Liu, X., Li, L., Das, D., Naqvi, I.H., Pecht, M.G.: Online degradation state assessment methodology for multi-mode failures of insulated gate bipolar transistor. IEEE Access 8, 69471-69481 (2020) https://doi.org/10.1109/access.2020.2984385
  27. Saha, B., Celaya, J. R., Wysocki, P. F., Goebel, K. F.: Towards prognostics for electronics components. Proceedings of IEEE Aerospace Conference, pp 1-7 (2009)
  28. Hanif, A., Yu, Y., DeVoto, D., Khan, F.: A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices. IEEE Trans. Power Electron. 34(5), 4729-4746 (2018) https://doi.org/10.1109/tpel.2018.2860587
  29. Wang, H., Liserre, M., Blaabjerg, F., et al.: Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J Emerg Sel Topics Power Electron 2(1), 97-114 (2013) https://doi.org/10.1109/JESTPE.2013.2290282
  30. Held, M., Jacob, P., Nicoletti, G., et al.: Fast power cycling test of IGBT modules in traction application. Proceedings of 1997 International Conference on Power Electronics and Drive Systems, pp 425-430 (1997)
  31. Kovacevic, I. F., Drofenik. U., Kolar, J. W.: New physical model for lifetime estimation of power modules. International Power Electronics Conference-ECCE ASIA, 2106-2114 (2010)
  32. Zhou, Z., Khanniche, M. S., Igic, P., Kong, S. T., Towers, M., Mawby, P. A.: A fast power loss calculation method for long real time thermal simulation of IGBT modules for a three-phase inverter system. European Conference on Power Electronics and Applications, 9 (2005)
  33. Drofenik, U., Kolar, J.W.: A general scheme for calculating switching and conduction losses of power semiconductors in numerical circuit simulations of power electronic systems. Proc. Int. Power Electronics Conf., 1-7 (2005)
  34. Li, G., Du, X., Sun, P., et al.: Numerical IGBT Junction temperature calculation method for lifetime estimation of power semiconductors in the wind power converters. Proc. IEEE Int'l Power Electronics Application Conf. and Exposition, 49-55 (2015)
  35. Shen, Z., Dinavahi, V.: Real-time device-level transient electrothermal model for modular multilevel converter on FPGA. IEEE Trans. Power Electron. 31(9), 6155-6168 (2015) https://doi.org/10.1109/TPEL.2015.2503281
  36. Anurag, A., Yang, Y., Blaabjerg, F.: Thermal performance and reliability analysis of single-phase PV inverters with reactive power injection outside feed-in operating hours. IEEE J Emerg Sel Topics Power Electron 3(4), 870-880 (2015) https://doi.org/10.1109/JESTPE.2015.2428432
  37. 2MBI100VA-060-50. https://www.fujielectric.com/products/semiconductor/model/igbt
  38. R. S. Varga, Matrix iterative analysis. Springer (2009)
  39. Fuji IGBT Simulator, [Online] https://www.fujielectric.com/products/semicon-ductor/model/igbt/simulation/index.html
  40. Ma K (2015) Electro-thermal model of power semiconductors dedicated for both case and junction temperature estimation. In: Power Electronics for the Next Generation Wind Turbine System, Cham, Switzerland: Springer, pp 139-143
  41. Isidoril, A., Rossi, F.M., Blaabjerg, F., Ma, K.: Thermal loading and reliability of 10-mw multilevel wind power converter at different wind roughness classes. IEEE Trans. Ind. Appl. 50(1), 484-494 (2014) https://doi.org/10.1109/TIA.2013.2269311
  42. Fuji Electric. www.fujielectric.com Fuji IGBT modules application manual[Online].2013 [Updated: January, 2017]. https://www.fujielectric.com/products/semiconductor/model/igbt/application/box/doc/pdf/REH984c/REH984c.pdf.
  43. Gerstenmair, Y. C., Wachutka, G.: Calculation of the temperature development in electronic systems by convolution integrals, 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 50-59 (2000)
  44. Yang, Y., Master, R., Tosaya, E., Touzelbaev, M.: Transient frequency-domain thermal measurements with applications to electronic packaging. IEEE Trans Compon Packag Manuf Technol 2(3), 448-456 (2012) https://doi.org/10.1109/TCPMT.2010.2100712
  45. Ma, K., He, N., Liserre, M., Blaabjerg, F.: Frequency-domain thermal modeling and characterization of power semiconductor devices. IEEE Trans. Power Electron. 31(10), 7183-7193 (2016) https://doi.org/10.1109/TPEL.2015.2509506
  46. Reigosa, P.D., Wang, H., Yang, Y., et al.: Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation. IEEE Trans. Power Electron. 31(10), 7171-7182 (2016) https://doi.org/10.1109/TPEL.2015.2509643
  47. Datasheet optris CTlaser LT. https://www.optris.global/optris-ctlaser-lt?fle=tl_fles/pdf/Downloads/High%2520Performance%2520Series/datasheet-optris-ctlaser-lt.pdf.
  48. Wu, R., Wang, H., Pedersen, K.B., Ma, K., Ghimire, P., Iannuzzo, F., Blaabjerg, F.: A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations. IEEE Trans. Ind. Appl. 52(4), 3306-3314 (2016) https://doi.org/10.1109/TIA.2016.2540614
  49. Xiang, L., Ran Tavner, P., Bryant, A., et al.: Monitoring solder fatigue in a power module using case-above-ambient temperature rise. IEEE Trans. Ind. Appl. 47(6), 2578-2591 (2011) https://doi.org/10.1109/TIA.2011.2168556
  50. Zhang, J., Du, M., Jing, L., Wei, K., Hurley, W.G.: IGBT junction temperature measurements: inclusive of dynamic thermal parameters. IEEE Trans Device Mater Relib 19(2), 333-340 (2019) https://doi.org/10.1109/TDMR.2019.2910182
  51. Tian, B., Qiao, W., Wang, Z., Gachovska, T., Hudgins, J.L.: Monitoring IGBT's health condition via junction temperature variations. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2550-2555 (2014)
  52. Schmidt R., Scheuermann U.: Using the chip as a temperature sensor-The influence of steep lateral temperature gradients on the Vce(T)-measurement. Proceedings of the 13th Eur. Conf. Power Electron, pp 1-9 (2009)
  53. Dupont, L., Avenas, Y., Jeannin, P.-O.: Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4) (2013)
  54. Ma, K, Blaabjerg, F.: Reliability-cost models for the power switching devices of wind power converters. Proc. IEEE Conf. Power Electronics for Distributed Generation Systems, 820-827 (2012)-APEC, 2550-2555 (2014)