DOI QR코드

DOI QR Code

Current-balancing strategy for multileg interleaved DC/DC converters of electric-vehicle chargers

  • Choi, Hye-Won (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Seok-Min (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Jinwoo (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Cho, Younghoon (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2020.09.04
  • Accepted : 2020.10.14
  • Published : 2021.01.20

Abstract

A current-balancing strategy for a multileg interleaved DC/DC converter with a reduced number of current sensors for electric-vehicle chargers is proposed in this paper. There are imbalances between the leg currents of multileg DC/DC converters, which are caused by the difference between the leg impedances and the driver delay. Each of the leg current sensors must achieve current balancing. However, the conventional strategy is burdensome due to its high cost and volume. To mitigate these issues, the proposed balancing strategy effectively balances leg currents using fewer current sensors than the number of legs. The proposed strategy was verified by various simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy(MOTIE, Korea) (No. 20194030202370, 20010854).

References

  1. Lee, K.-B., Advanced Power Electronics, Munundang, ISBN 979-11-5692-402-9. (2019)
  2. Park, J.-H., Jeong, H.-G., Lee, K.-B.: Output current ripple reduction algorithms for home energy storage systems. Energies 6(10), 5552-5569 (2013) https://doi.org/10.3390/en6105552
  3. Lee, H.R., Park, J.-H., Lee, K.-B.: Optimal soft-switching scheme for a bidirectional DC-DC converters with auxiliary circuit. J. Power Electron. 18(3), 681-693 (2018) https://doi.org/10.6113/JPE.2018.18.3.681
  4. Kim, S.-K., Park, J.-H., Lee, K.-B.: Robust optimal output voltage tracking algorithm for interleaved N-phase DC/DC boost converter with performance recovery property. Int. J. Electron. 105(10), 1673-1694 (2018) https://doi.org/10.1080/00207217.2018.1477198
  5. Choi, W.J., Kim, S.-K., Kim, J., Lee, K.-B.: Input-constrained current controller for DC/DC boost converter. J. Power Electron. 16(6), 2016-2023 (2016) https://doi.org/10.6113/JPE.2016.16.6.2016
  6. Bhargavi, K.M., Jayalakshmi, N.S.: A new control strategy for plug-in electric vehicle of DC microgrid with PV and wind power integration. J. Electr. Eng. Technol. 14(1), 13-25 (2019) https://doi.org/10.1007/s42835-018-00013-9
  7. Dai, S., Wang, J., Li, T., Shan, Z., Wei, Y.: Analysis, design and implementation of fexible interlaced converter for lithium battery active balancing in electric vehicles. J. Power Electron. 19(4), 858-868 (2019) https://doi.org/10.6113/JPE.2019.19.4.858
  8. Khosroshahi, A., Abapour, M., Sabahi, M.: Reliability evaluation of conventional and interleaved DC-DC boost converters. IEEE Trans. Power Electron. 30(10), 5821-5828 (2015) https://doi.org/10.1109/TPEL.2014.2380829
  9. Lee, J.-H., Lee, J.-S., Lee, K.-B.: Current sensorless MPPT control method for dual-mode PV module-type interleaved flyback inverters. J. Power Electron. 15(1), 54-64 (2015) https://doi.org/10.6113/JPE.2015.15.1.54
  10. Park, S., Park, Y., Choi, S., Lee, K.-B.: Soft-switched interleaved boost converters for high step-up and high-power applications. IEEE Trans. Power Electron. 26(10), 2906-2914 (2011) https://doi.org/10.1109/TPEL.2010.2089698
  11. Shi, L., Liu, B., Duan, S.: Current sharing method based on optimal phase shift control for interleaved three-phase half bridge LLC converter with foating Y-connection. J. Power Electron. 19(4), 934-943 (2019) https://doi.org/10.6113/JPE.2019.19.4.934
  12. Ma, P., Liang, W., Chen, H., Zhang, Y., Hu, X.: Interleaved high step-up boost converter. J. Power Electron. 19(3), 665-675 (2019) https://doi.org/10.6113/JPE.2019.19.3.665
  13. Yeo, S.C., Kang, F.-S.: Fault-tree based failure-rate analysis for boost converter and interleaved boost converter. J. Electr. Eng. Technol. 14(6), 2375-2387 (2019) https://doi.org/10.1007/s42835-019-00284-w
  14. Moon, S.-H., Jou, S.-T., Lee, K.-B.: Performance improvement of a bidirectional DC-DC converter for battery chargers using an LCLC flter. J. Electr. Eng. Technol. 10(2), 560-573 (2015) https://doi.org/10.5370/JEET.2015.10.2.560
  15. Park, K., Lee, K.-B.: A bidirectional double uneven power converter based DC-DC converter for solid-state transformers. Electronics 7, 334 (2018) https://doi.org/10.3390/electronics7110334
  16. Roh, Y.-S., Moon, Y.-J., Park, J., Jeong, M.-G., Yoo, C.: A multiphase synchronous buck converter with a fully integrated current balancing scheme. IEEE Trans. Power Electron. 30(9), 5159-5169 (2015) https://doi.org/10.1109/TPEL.2014.2368130
  17. Adivi, M.G., Yazdani, M.R.: A forward-integrated buck DC-DC converter with low voltage stress for high step-down applications. J. Power Electron. 18(2), 356-363 (2018) https://doi.org/10.6113/JPE.2018.18.2.356
  18. Liang, D., Shin, H.-B.: Coupled inductor design method for 2-phase interleaved boost converters. J. Power Electron. 19(2), 344-352 (2019) https://doi.org/10.6113/JPE.2019.19.2.344
  19. Lee, Y.-J., Cho, Y., Choe, G.-H.: A phase current reconstruction technique using a single current sensor for interleaved three-phase bidirectional converters. J. Electr. Eng. Technol. 11(4), 905-914 (2016) https://doi.org/10.5370/JEET.2016.11.4.905
  20. Yutao, L., Feng, W.: Optimization of bidirectional DC/DC converter for electric vehicle based on driving cycle. J. Electr. Eng. Technol. 12(5), 1934-1944 (2017) https://doi.org/10.5370/JEET.2017.12.5.1934
  21. Cho, Y., Koran, A., Miwa, H., York, B., Lai, J.-S.: An active current reconstruction and balancing strategy with DC-link current sensing for a multi-phase coupled-inductor converter. IEEE Trans. Power Electron. 27(4), 1697-1705 (2012) https://doi.org/10.1109/TPEL.2011.2170590
  22. Han, J., Song, J.-H.: Phase current-balance control using DC-link current sensor for multiphase converters with discontinuous current mode considered. IEEE Trans. Ind. Electron. 63(7), 4020-4030 (2016) https://doi.org/10.1109/TIE.2016.2530781
  23. Qahouq, J.A., Mao, H., Batarseh, I.: Multiphase voltage-mode hysteretic controlled DC-DC converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397-1407 (2004) https://doi.org/10.1109/TPEL.2004.836639
  24. Chen, H.-C., Lu, C.-Y., Huang, L.-M.: Decoupled current-balancing control with single-sensor sampling-current strategy for two-phase interleaved boost-type converters. IEEE Trans. Ind. Electron. 63(3), 1507-1518 (2016) https://doi.org/10.1109/TIE.2015.2498135
  25. Qahouq, J., Huang, L., Huard, D.: Efficiency-based auto-tuning of current sensing and sharing loops in multiphase converters. IEEE Trans. Power Electron. 23(2), 1009-1013 (2008a) https://doi.org/10.1109/TPEL.2008.917808
  26. Gordillo, J., Aguilar, C.: A simple sensorless current sharing technique for multiphase DC-DC buck converters. IEEE Trans. Power Electron. 32(5), 3480-3489 (2017) https://doi.org/10.1109/TPEL.2016.2592240
  27. Qahouq, J.A.A., Huang, L., Huard, D.: Sensorless current sharing analysis and scheme for multiphase converters. IEEE Trans. Power Electron. 23(5), 2237-2247 (2008b) https://doi.org/10.1109/TPEL.2008.2001897
  28. Wang, C., Wang, K., Zheng, Z., Sun, K., Li, Y.: Modulation induces current imbalance and its sensorless control of a GaN-based four-phase DC-DC power amplifier. IEEE Trans. Ind. Electron. 67(2), 1520-1531 (2020) https://doi.org/10.1109/tie.2019.2905828
  29. Kim, H., Falahi, M., Jahns, T.M., Degner, M.W.: Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters. IEEE Trans. Power Electron. 26(5), 1503-1510 (2011) https://doi.org/10.1109/TPEL.2010.2084108