DOI QR코드

DOI QR Code

Artificial Intelligence Application Cases and Considerations in Digital Healthcare

디지털헬스케어에서의 인공지능 적용 사례 및 고찰

  • Park, Minseo (Department of Data Science, Seoul Women'sUniversity)
  • 박민서 (서울여자대학교 데이터사이언스학과)
  • Received : 2021.10.28
  • Accepted : 2022.01.20
  • Published : 2022.01.28

Abstract

In a broad sense, the definition of digital health care is an industrial area that manages personal health and diseases through the convergence of the health care industry and ICT. In a narrow sense, various medical technologies are used to manage medical services to improve patient health. This paper aims to provide design guidelines so that artificial intelligence technology can be applied stably and efficiently to more diverse digital health care fields in the future by introducing use cases of artificial intelligence and machine learning techniques applied in the digital health care field. For this purpose, in this thesis, the medical field and the daily life field are divided and examined. The two regions have different data characteristics. By further subdividing the two areas, we looked at the use cases of artificial intelligence algorithms according to data characteristics and problem definitions and characteristics. Through this, we will increase our understanding of artificial intelligence technologies used in the digital health care field and examine the possibility of using various artificial intelligence technologies.

디지털 헬스케어의 정의는 광의로는 헬스케어 산업과 ICT가 융합되어 개인건강과 질환을 관리하는 산업영역을 의미하고, 협의로는 환자의 건강을 향상시키기 위해 의료 서비스를 관리하는데 다양한 의료 기술을 사용하는 것을 포함한다. 본 논문은 디지털 헬스케어 분야에 적용되고 있는 인공지능과 기계학습 기법들의 활용사례 소개를 통해 다양한 디지털 헬스케어 분야에 인공지능 기술이 안정적이고 효율적으로 적용할 수 있도록 설계 지침을 제공하는 데 목적이 있다. 이를 위해 본 논문에서는 의료분야와 일상생활 분야로 나누어서 살펴보았다. 두 영역은 다른 데이터 특성을 갖는다. 두 개의 영역을 보다 세분화하여 데이터 특성 및 문제 정의 및 특징에 따른 인공지능 알고리즘 활용사례를 살펴보았다. 이를 통해 디지털 헬스케어 분야에서 활용되는 인공지능 기술들에 대한 이해도를 높이고 다양한 인공지능 기술의 활용에 대한 가능성을 검토하여 인공지능 기술이 헬스케어 산업과 개인의 건강한 삶에 기여할 수 있는 근본적인 가치에 대해 고찰한다.

Keywords

References

  1. G. Iyawa, M. Herselman & A. Botha (2016). Digital Health Innovation Ecosystems: From Systematic Literature Review to Conceptual Framework. In:Procedia Computer Science, 100, 244-252. DOI : 10.1016/J.PROCS.2016.09.149
  2. A. Arora. (2020). Conceptualising Artificial Intelligence as a Digital Healthcare Innovation: An Introductory Review". In: Medical Devices: Evidence and Research, 13 223-230. DOI : 10.2147/MDER.S262590.
  3. J. Hwang. (2021). Global Health Care Outlook , Deloitte Insights
  4. C. Bishop. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, ISBN: 0387310738.
  5. T. Hastie, R. Tibshirani & J. Friedman. (2001). The Elements of Statistical Learning. Springer Series in Statistics,New York, NY, USA: Springer New York Inc.
  6. R. Schapire & Y. Freund. (2012). Boosting: Foundations and Algorithms, The MIT Press, ISBN: 0262017180, 9780262017183.
  7. K. Yu, A. Beam & I. Kohane (2018). Artificial intelligence in healthcare". In: Nature Biomedical Engineering, 2, 719-731. https://doi.org/10.1038/s41551-018-0305-z
  8. Y. Woo, S. Lee, C. Choi, C. Ahn & O. Baek(2019). Trend of Utilization of Machine Learning Technology for Digital Healthcare Data Analysis, ETRI, 34.
  9. A. Qayyum et al. (2020). Secure and Robust Machine Learning for Healthcare: A Survey. In: IEEE Reviews in Biomedical Engineering. DOI : 10.1109/RBME.2020.3013489.
  10. B. Peter, L. Jensen & S. Brunak. (2012). "Mining electronic health records: towards better research applications and clinical care. In: Nature Reviews Genetics, 13, 395-405. DOI : 10.1038/nrg3208.
  11. Z. Wang et al. (2012). Extracting Diagnoses and Investigation Results from Unstructured Text in Electronic Health Records by Semi-Supervised Machine Learning. In: PLOS ONE, 7(1), 1-9. DOI : 10.1371/journal.pone.0030412.
  12. T. Zheng et al. (2017). A machine learning-based framework to identify type 2 diabetes through electronic health records. In: International journal of medical informatics, 97, 120-127. DOI : 10.1016/j.ijmedinf.2016.09.014.
  13. B. Nestor et al. (2019). Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks. arXiv: 1908.00690 [cs.LG].
  14. E. Long et al. (2017). An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature biomedical engineering, 1(2), 1-8. DOI : 10.1038/s41551-016-0024.
  15. A. Esteva et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. In: Nature, 542. DOI : 10.1038/nature21056.
  16. V. Gulshan et al. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. In: JAMA, 316. DOI : 10.1001/jama.2016.17216.
  17. J. Zech et al. (2018). Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports. In: Radiology, 287, 570-580. DOI : 10.1148/radiol.2018171093.
  18. B. Jing, P. Xie & E. Xing. (2018). "On the Automatic Generation of Medical Imaging Reports". In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 1. DOI : 10.18653/v1/p18-1240
  19. X. Wang et al. (2018). TieNet: Text-Image Embedding Networkfor Common Thorax Disease Classification and Reporting in Chest X-rays. arXiv: 1801.04334 [cs.CV].
  20. Y. Xue et al. (2018). Multimodal Recurrent Model with Attention for Automated Radiology Report Generation. 21st International Conference, Granada, Spain, September 16-20, Proceedings, Part I, (pp. 457-466). DOI : 10.1007/978-3-030-00928-1_52.
  21. V. Jindal. (2016). Integrating Mobile and Cloud for PPG Signal Selection to Monitor Heart Rate during Intensive Physical Exercise. In: 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft), (pp. 36-37). DOI : 10.1109/MobileSoft.2016.027.
  22. F. Attal et al. (2015). Physical Human Activity Recognition Using Wearable Sensors. In: Sensors, 15, pp. 31314-31338, DOI : 10.3390/s151229858.
  23. J. Cruz & D. Wishart. (2007). Applications of Machine Learning in Cancer Prediction and Prognosis. In: Cancer Informatics, 2, (pp. 59-77). DOI : 10.1177/117693510600200030
  24. S. Weng et al. (2017). Can Machine-learning improve cardiovascular risk prediction using routine clinical data?. In: PLoS ONE, 12, DOI : 10.1371/journal.pone.0174944
  25. M. Fatima & M. Pasha. (2017). Survey of Machine Learning Algorithms for Disease Diagnostic. In: Journal of Intelligent Learning Systems and Applications, 09, (pp. 1-16). DOI : 10.4236/jilsa.2017.91001.
  26. https://www.berghealth.com/
  27. https://www.p1vital.com/
  28. A. Collins & Y. Yao. (2018). Machine Learning Approaches: Data Integration for Disease Prediction and Prognosis. In Applied Computational Genomics (pp. 137-141). Springer, Singapore. DOI : 10.1007/978-981-13-1071-3_10.
  29. P. Afshar, A. Mohammadi & K. Plataniotis. (2018). Brain Tumor Type Classification via Capsule Networks. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 3129-3133). IEEE. DOI : 10.1109/ICIP.2018.8451379.
  30. W. Zhu et al. (2018). DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 673-681). arXiv: 1801.09555 [cs.CV].
  31. H. Novatchkov & A. Baca. (2013). Artificial intelligence in sports on the example of weight training. J Sports Sci Med, 12(1), 27-37.
  32. L. Jia & L. Li. (2020). Research on core strength training of aerobics based on artificial intelligence and sensor network. J Wireless Com Network, 164.
  33. S. Park, S. Ryoo & S. Dong. (2021). Responsive Healthcare System for Posture Correction Using Webcam-Based Turtle Neck Syndrome Discrimination Algorithm. J Korea Multimedia Society, 24(2), 285-294. DOI : 10.9717/kmms.2020.24.2.285
  34. E. Pinero-Fuentes et al. (2021). A Deep-Learning Based Posture Detection System for Preventing Telework-Related Musculoskeletal Disorders. Sensors, 21, 5236. DOI : 10.3390/s21155236
  35. A. Aguirre et al. (2021). Machine Learning Approach for Fatigue Estimation in sit to stand exercise. Sensors, 21, 5006. DOI : 10.3390/s21155006
  36. F. Galbusera, G. Casaroli & T. Bassani. (2019). Artificial intelligence and machine learning in spine research. JOR Spine. DOI : 10.1002/jsp2.1044
  37. Z. Shen, A. Shehzad, S. Chen, H. Sun & J. Liu (2020). "=Machine Learning Based Approach on Food Recognition and Nutrition Estimation. Procedia Computer Science, 174, 448-453. DOI:10.1016/j.procs.2020.06.113
  38. P. Pouladzadeh, G. Villalobos, R. Almaghrabi & S. Shirmohammadi (2012). A Novel SVM Based Food Recognition Method for Calorie Measurement Applications. IEEE International Conference on Multimedia and Expo Workshops, (pp. 495-498). DOI : 10.1109/ICMEW.2012.92.
  39. 'Deep learning technology to manage diet smartly.' https://tech.kakaoenterprise.com/84
  40. N. Jhamat, G. Mustafa, Z. Arshad & R. Abbas. (2021). Expert System for Recommendations of Healthy Food Recipes using machine learning. xIlkogretim Online - Elementary Education Online, 20(5), 2867-2874. DOI : 10.17051/ilkonline.2021.05.313