DOI QR코드

DOI QR Code

Spherical Silicon/CNT/Carbon Composite Wrapped with Graphene as an Anode Material for Lithium-Ion Batteries

  • Shin, Min-Seon (Department of Materials Science and Engineering, Kangwon National University) ;
  • Choi, Cheon-Kyu (Department of Materials Science and Engineering, Kangwon National University) ;
  • Park, Min-Sik (Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University) ;
  • Lee, Sung-Man (Department of Materials Science and Engineering, Kangwon National University)
  • Received : 2021.10.12
  • Accepted : 2021.10.19
  • Published : 2022.02.28

Abstract

The assembly of the micron-sized Si/CNT/carbon composite wrapped with graphene (SCG composite) is designed and synthesized via a spray drying process. The spherical SCG composite exhibits a high discharge capacity of 1789 mAh g-1 with an initial coulombic efficiency of 84 %. Moreover, the porous architecture of SCG composite is beneficial for enhancing cycling stability and rate capability. In practice, a blended electrode consisting of spherical SCG composite and natural graphite with a reversible capacity of ~500 mAh g-1, shows a stable cycle performance with high cycling efficiencies (> 99.5%) during 100 cycles. These superior electrochemical performance are mainly attributed to the robust design and structural stability of the SCG composite during charge and discharge process. It appears that despite the fracture of micro-sized Si particles during repeated cycling, the electrical contact of Si particles can be maintained within the SCG composite by suppressing the direct contact of Si particles with electrolytes.

Keywords

References

  1. J. M. Tarascon, M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. V. Etacheri, R. Marom, R. Elazari, G. Salita, D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262. https://doi.org/10.1039/c1ee01598b
  3. J. Lu, Z. Chen,F. Pan, Y. Cui, K. Amine, Electrochem. Energy Rev., 2018, 1(1), 35-53. https://doi.org/10.1007/s41918-018-0001-4
  4. R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy, 2018, 3(4), 267-278. https://doi.org/10.1038/s41560-018-0107-2
  5. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustainable Energy Fuels, 2020, 4(11), 5387-5416. https://doi.org/10.1039/D0SE00175A
  6. A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, G. Wu, Nano Energy, 2016, 27, 359-76. https://doi.org/10.1016/j.nanoen.2016.07.023
  7. T. Yoon, C. C. Nguyen, D. M. Seo, B. L. Lucht, J. Electrochem. Soc., 2015, 162(12), A2325. https://doi.org/10.1149/2.0731512jes
  8. P. G. Bruce, B. Scrosatti, J. M. Tarascon, Angew. Chem. Int. Ed., 2008, 47(16), 2930-2946. https://doi.org/10.1002/anie.200702505
  9. R. Yi, F. Dai, M. L. Gordin, S. R. Chen, D. H. Wang, Adv. Energy Mater., 2013, 3(3), 295-300. https://doi.org/10.1002/aenm.201200857
  10. X. Li, M. Zhang, S. Yuan, C. Lu, ChemElectroChem, 2020, 7(21), 4289-4302. https://doi.org/10.1002/celc.202001060
  11. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater., 2017, 7(23), 1700715. https://doi.org/10.1002/aenm.201700715
  12. X. Liu, X. Zhu, D. Pan, R. Soc. Open Sci., 2018, 5(6), 172370. https://doi.org/10.1098/rsos.172370
  13. F. Dou, L. Shi, G. Chen, D. Zhang, Electrochem. Energy Rev., 2019, 2(1), 149-198. https://doi.org/10.1007/s41918-018-00028-w
  14. X. Zhao, V. P. Lehto, Nanotechnology, 2021, 32, 042002. https://doi.org/10.1088/1361-6528/abb850
  15. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustainable Energy Fuels, 2020, 4(11), 5387-5416. https://doi.org/10.1039/D0SE00175A
  16. H. Kim, M. Seo, M. Park, J. Cho, Angew. Chem. Int. Ed., 2010, 49(12), 2146-2149. https://doi.org/10.1002/anie.200906287
  17. S. W. Lee, M. T. McDowell, J. W. Choi, Y. Cui, Nano Lett., 2011, 11(7), 3034-3039. https://doi.org/10.1021/nl201787r
  18. Y. Li, K. Yan, H. -W. Lee, Z. Lu, N. Liu, Y. Cui, Nat. Energy, 2016, 1(2), 1-9
  19. X. Zhang, R. Guo, X. Li, L. Zhi, Small, 2018, 14(24), 1800752. https://doi.org/10.1002/smll.201800752
  20. B. Lee, T. Liu, S. K. Kim, H. Chang, K. Eom, L. Xie, S. Chen, H. D. Jang, S. W. Lee, Carbon, 2017, 119, 438. https://doi.org/10.1016/j.carbon.2017.04.065
  21. X. Han, H. Chen, Z. Zhang, D. Huang, J. Xu, C. Li, S. Chen, Y. Yang, J. Mater. Chem. A, 2016, 4(45), 17757-17763. https://doi.org/10.1039/C6TA07274G
  22. X. Liu, D. Chao, Q. Zhang, H. Liu, H. Hu, J. Zhao, Y. Li, Y. Huang, J. Lin, Z. X. Shen, Sci. Rep., 2015, 5(1), 1-10.
  23. B. Liu, P. Soares, C. Checkles, Y. Zhao, G. Yu, Nano Lett., 2013, 13(7), 3414-3419. https://doi.org/10.1021/nl401880v
  24. G. D. Park, J. H. Choi, D. S. Jung, J.S. Park, Y. C. Kang, J. Alloy Comp., 2020, 821, 153224. https://doi.org/10.1016/j.jallcom.2019.153224
  25. Y. Li, G. Xu, L. Xue, S. Zhang, Y. Yao, Y. Lu, O. Toprakci, X. Zhang, J. Electrochem. Soc., 2013, 160(3), A528. https://doi.org/10.1149/2.031304jes
  26. T. D. Hatchard, J. R. Dahn, J. Electrochem. Soc., 2004, 151(6), A838. https://doi.org/10.1149/1.1739217
  27. W. J. Zhang, J. Power Sources, 2011, 196(3), 877-885. https://doi.org/10.1016/j.jpowsour.2010.08.114
  28. J. Li, A. Smith, R. J. Sanderson, T. D. Hatchard, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc., 2009, 156(4), A283. https://doi.org/10.1149/1.3073879
  29. J. H. Ryu, J. W. Kim, Y. E. Sung, S. M. Oh, Electrochem. Solid-State Lett., 2004, 7(10), A306. https://doi.org/10.1149/1.1792242
  30. M. N. Obrovac, L. Christensen, Electrochem. Solid-State Lett., 2004, 7(5), A93. https://doi.org/10.1149/1.1652421
  31. J. Li, J. R. Dahn, J. Electrochem. Soc., 2007, 154(3), A156. https://doi.org/10.1149/1.2409862
  32. J. Saint, M. Morerette, D. Larcher, L. Laffont, S. Beattie, J. P. Peres, D. Talaga, M. Couzi, J. M. Tarascon, Adv. Funct. Mater., 2007, 17(11), 1765-1774. https://doi.org/10.1002/adfm.200600937
  33. H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, Electrochem. Solid-State Lett., 1999, 2(11), 547. https://doi.org/10.1149/1.1390899
  34. M. Wetjen, D. Pritzl, R. Jung, S. Solchenbach, R. Ghadimi, H. A. Gasteiger, J. Electrochem. Soc., 2017, 164(12), A2840. https://doi.org/10.1149/2.1921712jes
  35. F. Jeschull, Y. Surace, S. Zurcher, M. E. Spahr, P. Novak, S. Trabesinger, Electrochim. Acta, 2019, 320, 134602. https://doi.org/10.1016/j.electacta.2019.134602
  36. V. L. Chevrier, L. Liu, D. B. Le, J. Lund, B. Molla, K. Reimer, L. J. Krause, L. D. Jensen, E. Figgemeier, K. W. Eberman, J. Electrochem. Soc., 2014, 161(5), A783. https://doi.org/10.1149/2.066405jes
  37. X. Li, P. Yan, X. Xiao, J. H. Woo, C. Wang, J. Liu, J. G. Zhang, Energy Environ. Sci., 2017, 10(6), 1427-1434. https://doi.org/10.1039/C7EE00838D
  38. J. B. Park, J. S. Ham, M. S. Shin, H. K. park, Y. J. lee, S. M. Lee, J. Power Sources, 2015, 299, 537. https://doi.org/10.1016/j.jpowsour.2015.09.019
  39. S. S. Suh, W. Y. Yoon, D. H. Kim, S. U. Kwon, J. H. Kim, Y. U. Kim, C. U. Jeong, Y. Y. Chan, S. H. Kang, J. K. Lee, Electrochim. Acta., 2014, 148, 111-117. https://doi.org/10.1016/j.electacta.2014.08.104
  40. H. Jung, K. S. Kim, S. E. Park, J. Park, Eletrochim. Acta, 2017, 245, 791-795. https://doi.org/10.1016/j.electacta.2017.05.187
  41. Z. Du, R. A. Dunlap, M. N. Obrovac, J. Electrochem. Soc., 2014, 161(10), A1698. https://doi.org/10.1149/2.0941410jes