DOI QR코드

DOI QR Code

황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model

  • 강미선 (국립기상과학원 예보연구부) ;
  • 이우정 (국립기상과학원 예보연구부) ;
  • 장필훈 (국립기상과학원 예보연구부) ;
  • 김미경 (국립기상과학원 예보연구부) ;
  • 부경온 (국립기상과학원 기후연구부)
  • Kang, Misun (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Lee, Woojeong (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Chang, Pil-Hun (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Mi-Gyeong (Forecast Research Department, National Institute of Meteorological Sciences) ;
  • Boo, Kyung-On (Climate Research Department, National Institute of Meteorological Sciences)
  • 투고 : 2022.05.03
  • 심사 : 2022.06.02
  • 발행 : 2022.06.30

초록

This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

키워드

과제정보

이 연구는 기상청 국립기상과학원 「황사·연무 감시 및 예보기술 개발」(KMA2018-00521)의 지원으로 수행되었습니다.

참고문헌

  1. Benedetti, A., and F. Vitart, 2018: Can the direct effect of aerosols improve subseasonal predictability? Mon. Wea. Rev., 146, 3481-3498, doi:10.1175/MWR-D-17-0282.1.
  2. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosol. Science, 255, 423-430. https://doi.org/10.1126/science.255.5043.423
  3. Gao, T., L. Su, Q. Ma, H. Li, X. Li, and X. Yu, 2003: Climatic analyses on increasing dust storm frequency in the springs of 2000 and 2001 in Inner Mongolia. Int. J. Climatol., 23, 1743-1755. https://doi.org/10.1002/joc.970
  4. Gong, S. L., and X. Y. Zhang, 2008: CUACE/Dust - An integrated system of observation and modeling systems for operational dust forecasting in Asia. Atmos. Chem. Phys., 8, 2333-2340. https://doi.org/10.5194/acp-8-2333-2008
  5. Hong, J. H., 2004: Economic damage costs of Asian dust in Korea. The Hanyang J. Economic Studies, 25, 101-115 (in Korean).
  6. Husar, R. B., and Coauthors., 2001: Asian dust events of April 1998. J. Geophys. Res. Atmos., 106, 18317-18330, doi:10.1029/2000JD900788.
  7. Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2020.30.2.141 (in Korean with English abstract).
  8. Jaffe, D., and Coauthors, 1999: Transport of Asian air pollution to North America. Geophys. Res. Lett., 26, 711-714, doi:10.1029/1999GL900100.
  9. Kim, J., K. Baek, K. Lee, Y. Lee, and D. Hong, 2007: Effect of the Asian dust events on respiratory disease during the spring. J. Korean Soc. Emerg. Med., 18, 326-332 (in Korean with English abstract).
  10. Kim, S., H. C. Lee, S. Lee, J. Cho, and S.-B. Ryoo, 2018: A study on factors that affect the Asian dust frequency in springtime over the source regions. J. Climate Res., 13, 1-16, doi:10.14383/cri.2018.13.1.1 (in Korean with English abstract).
  11. Kramer, S. J., and B. P. Kirtman, 2021: Saharan dust transport predictability utilizing a subseasonal experiment (SubX) model. J. Geophys. Res. Atmos., 126, e2020-JD033802, doi:10.1029/2020JD033802.
  12. Kwon, H.-J., S.-H. Cho, Y. Chun, F. Lagarde, and G. Pershagen, 2002: Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res., 90, 1-5, doi:10.1006/enrs.2002.4377.
  13. Lang, X., 2008: Prediction model for spring dust weather frequency in North China. Sci. China Ser. D Earth Sci., 51, 709-720, doi:10.1007/s11430-008-0048-x.
  14. Lee, J.-J., and C.-H. Kim, 2008: Characteristics of recent occurrence frequency of Asian dust over the source regions - Analysis of the dust occurrences since 2002. Atmosphere, 18, 493-506 (in Korean with English abstract).
  15. Lee, Y. G., C.-H. Ho, J. Kim, and J. Kim, 2013: Potential impacts of northeastern Eurasian snow cover on generation of dust storms in northwestern China during spring. Climate Dyn., 41, 721-733, doi:10.1007/s00382-012-1522-x.
  16. Liu, X., Z.-Y. Yin, X. Zhang, and X. Yang, 2004: Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res., 109, D16210, doi:10.1029/2004JD004615.
  17. Lu, C.-H., and Coauthors, 2016: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP. Geosci. Model Dev., 9, 1905-1919, doi:10.5194/gmd-9-1905-2016.
  18. Maki, T., and Coauthors, 2020: Recent DSS related activities at the Japan Meteorological Agency and Meteorological Research Institute. The 13th Meeting of Working Group I for Joint Research on Dust and Sand Storms, Online Meeting [Available online at http://temm-dss.com/research/].
  19. Min, P.-K., C.-W. Kim, Y.-J. Yoon, J.-H. Chang, J.-K. Chu, K.-E. Lee, J.-Y. Han, J.-W. Park, and C.-S. Hong, 2001: Effect of yellow sand on respiratory symptoms and diurnal variation of peak expiratory flow in patients with bronchial asthma. J. Asthma, Allergy Clin. Immun., 21, 1179-1986.
  20. Oh, H.-R., C.-H. Ho, J. Kim, D. Chen, S. Lee, Y.-S. Choi, L.-S. Chang, and C.-K. Song, 2015: Long-range transport of air pollutants originating in China: a possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmos. Environ., 109, 23-30, doi:10.1016/j.atmosenv.2015.03.005.
  21. Park, M. E., J. H. Cho, S Kim, S.-S. Lee, J. E. Kim, H. C. Lee, J. W. Cha, and S. B. Ryoo, 2016: Case study of the heavy Asian dust observed in late February 2015. Atmosphere, 26, 257-275, doi:10.14191/Atmos.2016.26.2.257 (in Korean with English abstract).
  22. Park, S.-U., and H.-J. In, 2003: Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res. Atmos., 108, 4618, doi:10.1029/2003JD00348.
  23. Park, S.-U., A. Choe, E.-H. Lee, M.-S. Park, and X. Song, 2010: The Asian dust aerosol model 2 (ADAM2) with the use of normalized difference vegetation index (NDVI) obtained from the Spot4/vegetation data. Theor. Appl. Climatol., 101, 191-208, doi:10.1007/s00704-009-0244-4.
  24. Park, Y.-H., Y.-K. Hyun, S.-I. Heo, and H.-S. Ji, 2021: Assessment of the prediction performance of ensemble size-related in GloSea5 hindcast Data. Atmosphere, 31, 511-523, doi:10.14191/Atmos.2021.31.5.511 (in Korean with English abstract).
  25. Pu, B., P. Ginoux, S. B. Kapnick, and X. Yang, 2019: Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett., 46, 9163-9713, doi:10.1029/2019GL083703.
  26. Remy, S., and Coauthors, 2019: Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev., 12, 4627-4659, doi:10.5194/gmd-12-4627-2019.
  27. Ryoo, S.-B., Y.-K. Lim, and Y.-S. Park, 2020: Seasonal Asian Dust Forecasting Using GloSea5-ADAM. Atmosphere, 11, 526, doi:10.3390/atmos11050526.
  28. SDS-WAS ASIAN-RC, 2022: Sand and Dust Storm Warning Advisory and Assessment System ASIAN Regional Center. World Meteorological Organization [Available online at http://www.asdf-bj.net].
  29. Simmons, A. 2010: Monitoring atmospheric composition and climate. ECMWF Newsletter, 123, 10-13.
  30. Sohn, K. T., 2013: Statistical guidance on seasonal forecast of Korean dust days over South Korea in the springtime. Adv. Atmos. Sci., 30, 1343-1352, doi:10.1007/s00376-012-2112-x.
  31. Solmon, F., M. Mallet, N. Elguindi, F. Giorgi, A. Zakey, and A. Konare, 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett., 35, L24705, doi:10.1029/2008GL035900.
  32. Tanaka, T. Y., and M. Chiba, 2005: Global simulation of dust aerosol with a chemical transport model, MASINGAR. J. Meteorol. Soc. Japan Ser. II, 83A, 255-278. https://doi.org/10.2151/jmsj.83A.255
  33. Wang, X., Y. Ma, H. Chen, G. Wen, S. Chen, Z. Tao, and Y.-S. Chung, 2003: The relation between sandstorms and strong winds in Xinjiang, China. Water Air Soil Poll. Focus, 3, 67-79.
  34. Yoo, Y., J. T. Choung, J. Yu, D. K. Kim, and Y. Y. Koh, 2008: Acute effects of Asian dust events on respiratory symptoms and peak expiratory flow in children with mild asthma. J. Korean Med. Sci., 23, 66-71. https://doi.org/10.3346/jkms.2008.23.1.66
  35. Yu, X., T. Cheng, J. Chen, and Y. Liu, 2006: A comparison of dust properties between China continent and Korea, Japan in East Asia. Atmos. Environ., 40, 5787-5797. https://doi.org/10.1016/j.atmosenv.2006.05.013