DOI QR코드

DOI QR Code

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt

MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측

  • Taechul Park (Department of Plant Medicine, Gyeongsang National University) ;
  • Hojung Jang (Analysis Technology and Tomorrow (ATNT)) ;
  • SoEun Eom (Department of Plant Medicine, Gyeongsang National University) ;
  • Kimoon Son (Department of Plant Medicine, Gyeongsang National University) ;
  • Jung-Joon Park (Department of Plant Medicine, Gyeongsang National University)
  • 박태철 (경상대학교 식물의학과) ;
  • 장호중 ((주)분석기술과미래 중앙연구소) ;
  • 엄소은 (경상대학교 식물의학과) ;
  • 손기문 (경상대학교 식물의학과) ;
  • 박정준 (경상대학교 식물의학과)
  • Received : 2022.06.03
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

멸강나방(Mythimna seperata)과 혹명나방(Cnaphalocrocis medinalis)은 중국 남부 양쯔강 유역에서 봄철 편서풍을 타고 국내로 유입되는 비래 해충(Migratory insect pests)으로 벼를 기주로 삼아 벼 잎을 가해하여 생육을 저해시킨다. 두 나방의 분포를 파악하기 위해서는 서식처의 온습도 뿐만 아니라 주변 환경 요소를 파악하는 것이 중요하다. 본 연구는 두 나방의 분포를 파악하기 위해서 SDM(Species Distribution Model) 중 Machine learning model인 MaxEnt (Maximum Entropy)에 출현 자료, SSPs (Shared Socio-economic Pathways) 시나리오, RCP (Representative Concentration Pathway) 시나리오를 적용하여 현재와 미래의 서식지 적합성 모형을 예측했다. 결과로 시기에 따른 서식처 면적이 큰 차이가 없었으며, SSPs 시나리오가 나빠짐에 따라 분포 면적이 넓어졌다. 두 나방은 중국으로부터 비래 후 생존하기 위한 최적의 장소가 기주가 있는 서해안과 남해안에 집중되어 있다. MaxEnt 결과 토지피복 자료, DEM (Degital Elevation Model) 순으로 기여도가 높게 나타났다. 이는 논에서의 출현 확률 높고 고도가 높아지면서 출현 확률이 낮아졌기 때문이다. 기후 변수에서 멸강나방은 BIO_4 (Temperature seasonality), 혹명나방은 BIO_2 (Mean Diurnal Range)가 높게 나타났다. 멸강나방은 계절에 의한 기온 차가 31.9℃ 이상일 때 서식처가 줄어들고, 혹명나방은 일교차 클수록 서식처가 넓어질 것으로 나타났다. 서식지 적합성 모형에서 두 나방은 대부분의 논에서 서식이 가능할 것이라 예측되었다. 하지만, 두 나방의 출현 위치를 정확하게 예측하는 데 한계가 있으므로, 서식지 적합성 지도를 기초로 조기에 대응하는 것이 중요하다고 판단된다.

Keywords

Acknowledgement

이 연구는 본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01230703)의 지원 및 2019년도 경상국립대학교 연구년제 연구교수 연구지원비에 의하여 수행되었음.

References

  1. Bale JS, GJ Masters, ID Hodkinson. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 8:1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  2. Brown JL. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5:694-700. https://doi.org/10.1111/2041-210X.12200
  3. Chintalapati P, K Gururaj, V Sailaja, AP Padmakumari, V Jhansilakshmi, M Prabhakar and YG Prasad. 2013. Temperature thresholds and thermal requirements for the development of the rice leaf folder, Cnaphalocrocis medinalis. J. Insect Sci. 2013:1-14.
  4. Choi KM and EH Cho. 1975. On the seasonal fluctuation of the oriental rice armyworm, Pseudaletia separata Walker. Kor. J. Pl. Prot. 14:1-7.
  5. Choi KM. 1973. Cnaphalocrocis medinalis G. Rice Leaf Folder. Literature Review of Korea Rice Pests. Ins. Agr. Sci. O.R.D. pp. 17-18.
  6. Chung BJ. 1974. Studies on the occurrence, host plants, transmission, and control of rice stripe disease in Korea. Kor. J. Plant Prot. 13:181-204.
  7. Deutsch CA, JJ Tewksbury, RB Huey, KS Sheldon, CK Ghalambor, DC Haak and PR Martin. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105:6668-6672. https://doi.org/10.1073/pnas.0709472105
  8. Fan J, S Upadhye and A Worster. 2006. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 8:19-20. https://doi.org/10.1017/S1481803500013336
  9. Fick SE and RJ Hijmans. 2017. WorldClim2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37:4302-4315. https://doi.org/10.1002/joc.5086
  10. Franklin J. 2009. Mapping Species Distribution: Spatial Inference and Prediction. Cambridge University Press. Cambridge, UK. pp. 1-320.
  11. Fuse H. 1978. Susumia exigua Butler and Cnaphalocrocis medinalis G. in shonai district Tamagata prefectural. Agr. Exp. Sta. Kenkyushiry 52:1-22.
  12. Hanley JA and BJ McNeil. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29-36. https://doi.org/10.1148/radiology.143.1.7063747
  13. Hirai K. 1988. Sudden outbreaks of the armyworm, Pseudaletia separata Walker and its monitoring systems in Japan. Jpn. Agric. Res. Q. 22:166-174.
  14. Hirai K and H Santa. 1983. Comparative physioecological studies on the armyworms, Pseudaletia separata Walker and Leucania loreyi Duponchel (Lepidoptera: Noctuidae). Bull. Chugoku Nat. Agr. Exp. Sta. 21:55-101.
  15. Hong JS, GS Lee, JJ Park, HH Mo and K Cho. 2019. Risk map for the range expansion of Thrips palmi in Korea under climate change: Combining species distribution models with landuse change. J. Asia Pac. Entomol. 22:666-674. https://doi.org/10.1016/j.aspen.2019.04.013
  16. IPCC. 2021. Summary for policymakers. pp. 3-32. In: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Pean, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekci, R Yu and B Zhou, eds.). Cambridge University Press. Cambridge, UK.
  17. Jung CS, SJ Seo, CE Suk, HY Lee, SJ Hong, GJ Lee, UI Lee, JH Park and YI Park. 2020. Information on the Occurrence of Crop Pests in 2020 (No. 11). Rural Development Administration. Jeonju, Korea. pp. 1-32.
  18. Jung JK, BY Seo, JR Cho and Y Kim. 2013. Monitoring of Mythimna seperata adults by using a remote-sensing sex pheromone trap. Korean J. Appl. Entomol. 52:341-348. https://doi.org/10.5656/KSAE.2013.10.0.058
  19. Khan ZR, MLP Abenes and NJ Fernandez. 1996. Suitability of graminaceous weed species as host plants for rice leaf folder, Cnaphalocrocis medinalis and Marasmia patnalis. Crop Prot. 15:121-127.
  20. Kim KC and CS Choi. 1984. Studies on the bionomies and analysis of damage of the rice leaf folder, Cnaphalocrocis medinalis G. in South region of Korea. Rural Dev. Rev. 19:25-32.
  21. Kim KH, DS Kim, CG Park, SW Cho, YN Yoon and KY Lee. 2012. Principles and Application in Insect Pest Management. Hyang Moon Sa. Seoul. p. 340.
  22. Kim SB, JJ Park and DS Kim. 2020. CLIMEX simulated predictions of the potential distribution of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) considering the northern boundary: With special emphasis on Jeju, Korea. J. Asia Pac. Entomol. 23:797-808. https://doi.org/10.1016/j.aspen.2020.07.006
  23. Kisimoto R. 1971. Long distance migration of planthoppers Sogatalla furcifera and Nilaparvata lugens. Trop. Agr. Res. Ser. 5:201-206.
  24. Ko HR. 2002. Effect of hosts and temperatures on development and reproduction of rice armyworm, Pseudaletia separata (Lepidoptera: Noctuidae). MS thesis, Chungbuk National University. Cheongju, Korea.
  25. KOSIS. 2020. Korean Statistical Information Service. Statistics Korea. Daejeon, Korea. https://kosis.kr/index/index.do. (accessed on 05 May, 2022)
  26. Li GB, HX Wang and WX Hu. 1964. Route of the seasonal migration of the oriental armyworm moth in the eastern part of China as indicated by a three-year result of releasing and recapturing of marked moths. Acta Phytophylacica Sin. 3:101-110.
  27. Liu C, M White and G Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40:778-789. https://doi.org/10.1111/jbi.12058
  28. Muller MP, G Tomlinson, TJ Marrie, P Tang, A McGeer, DE Low and WL Gold. 2005. Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia? Clin. Infect Dis. 40:1079-1086. https://doi.org/10.1086/428577
  29. Park JJ, HH Mo, GS Lee, SE Lee, JH Lee and K Cho. 2014. Predicting the potential geographic distribution of Thrips palmi in Korea, using the CLIMEX model. Entomol. Res. 44:47-57. https://doi.org/10.1111/1748-5967.12049
  30. Park TC, HJ Choe, HJ Jeong, HJ Jang, KH Kim and JJ Park. 2018. Spatial pattern analysis for distribution of migratory insect pests at paddy field in Jeolla-province. Korean J. Appl. Entomol. 57:361-372.
  31. Parmesan C, N Ryrholm, C Stefanescu, JK Hill, Thomas CD, H Descimon, B Huntley, L Kaila, J Kullberg, T Tammaru, WJ Tennent, JA Thomas and M Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583. https://doi.org/10.1038/21181
  32. Pearson RG, TP Dawson and C Liu. 2004. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285-298. https://doi.org/10.1111/j.0906-7590.2004.03740.x
  33. Philips ST, RP Anderson and RE Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  34. Salama MS, LP Schouest Jr and TA Miller. 1992. Effect of diet on the esterase patterns in the hemolymph of the corn earworm and the tobacco budworm(Lepidoptera: Noctuidae). J. Econ. Entomol. 85:1079-1087. https://doi.org/10.1093/jee/85.4.1079
  35. Sato T and K Kishino. 1978. Ecological studies on the occurrence of the paddy leaf roller, Cnaphalocrocis medinalis G. Bull. Tohoku Nat'l. Agric. Exp. Stan. 58:47-80.
  36. Skendzic S, M Zovko, IP Zivkovic, V Lesic and D Lemic. 2021. The impact of climate change on agricultural insect pests. Insects 12:440.
  37. Song CH, SM Yoo, MI Kim, CH Lim, JW Kim, SJ Kim, GS Kim and WK Lee. 2018. Estimation of future land cover considering shared socioeconomic pathways using scenario generators. J. Climate Change Res. 9:223-234. https://doi.org/10.15531/KSCCR.2018.9.3.223
  38. Wada T, M Kobayashi and M Shimazu. 1980. Seasonal changes of the proportion of mated female in the field population of the rice leaf roller, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 15:81-89. https://doi.org/10.1303/aez.15.81