DOI QR코드

DOI QR Code

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Jaehyeon (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Hyunjin (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Han, Ji Eun (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Sohee (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kang, Kyong-hwa (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Donghoon (Department of Pharmacology, Dong-A University College of Medicine) ;
  • Kim, Jong-Min (Department of Anatomy and Cell Biology, Dong-A University College of Medicine) ;
  • Koh, Hyongjong (Department of Pharmacology, Dong-A University College of Medicine)
  • Received : 2021.09.24
  • Accepted : 2022.02.02
  • Published : 2022.07.31

Abstract

DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea, funded by the Ministry of Science and ICT (grant Nos. 2020R1F1A105165912 and 2016R1A5A2007009) and a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No. 2021R1A6C101A425).

References

  1. Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T., and Iguchi-Ariga, S.M. (2013). Neuroprotective function of DJ-1 in Parkinson's disease. Oxid. Med. Cell. Longev. 2013, 683920.
  2. Bandopadhyay, R., Kingsbury, A.E., Cookson, M.R., Reid, A.R., Evans, I.M., Hope, A.D., Pittman, A.M., Lashley, T., Canet-Aviles, R., Miller, D.W., et al. (2004). The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain 127, 420-430. https://doi.org/10.1093/brain/awh054
  3. Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., et al. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515-517. https://doi.org/10.1038/ng1769
  4. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., and Greenamyre, J.T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301-1306. https://doi.org/10.1038/81834
  5. Bonifati, V., Rizzu, P., van Baren, M.J., Schaap, O., Breedveld, G.J., Krieger, E., Dekker, M.C.J., Squitieri, F., Ibanez, P., Joosse, M., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259. https://doi.org/10.1126/science.1077209
  6. Brooks, A.I., Chadwick, C.A., Gelbard, H.A., Cory-Slechta, D.A., and Federoff, H.J. (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 823, 1-10. https://doi.org/10.1016/S0006-8993(98)01192-5
  7. Choi, J., Sullards, M.C., Olzmann, J.A., Rees, H.D., Weintraub, S.T., Bostwick, D.E., Gearing, M., Levey, A.I., Chin, L.S., and Li, L. (2006). Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem. 281, 10816-10824. https://doi.org/10.1074/jbc.M509079200
  8. Clements, C.M., McNally, R.S., Conti, B.J., Mak, T.W., and Ting, J.P. (2006). DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. U. S. A. 103, 15091-15096. https://doi.org/10.1073/pnas.0607260103
  9. Coulom, H. and Birman, S. (2004). Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J. Neurosci. 24, 10993-10998. https://doi.org/10.1523/JNEUROSCI.2993-04.2004
  10. Egge, N., Arneaud, S.L.B., Fonseca, R.S., Zuurbier, K.R., McClendon, J., and Douglas, P.M. (2021). Trauma-induced regulation of VHP-1 modulates the cellular response to mechanical stress. Nat. Commun. 12, 1484. https://doi.org/10.1038/s41467-021-21611-8
  11. Halim, N.D., McFate, T., Mohyeldin, A., Okagaki, P., Korotchkina, L.G., Patel, M.S., Jeoung, N.H., Harris, R.A., Schell, M.J., and Verma, A. (2010). Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58, 1168-1176. https://doi.org/10.1002/glia.20996
  12. Henchcliffe, C. and Beal, M.F. (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4, 600-609. https://doi.org/10.1038/ncpneuro0924
  13. Hwang, S., Song, S., Hong, Y.K., Choi, G., Suh, Y.S., Han, S.Y., Lee, M., Park, S.H., Lee, J.H., Lee, S., et al. (2013). Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9, e1003412. https://doi.org/10.1371/journal.pgen.1003412
  14. Im, J.Y., Lee, K.W., Woo, J.M., Junn, E., and Mouradian, M.M. (2012). DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum. Mol. Genet. 21, 3013-3024. https://doi.org/10.1093/hmg/dds131
  15. Jang, Y.G., Choi, Y., Jun, K., and Chung, J. (2020). Mislocalization of TORC1 to lysosomes caused by KIF11 inhibition leads to aberrant TORC1 activity. Mol. Cells 43, 705-717. https://doi.org/10.14348/molcells.2020.0089
  16. Jha, M.K., Jeon, S., and Suk, K. (2012). Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Curr. Neuropharmacol. 10, 393-403. https://doi.org/10.2174/157015912804143586
  17. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R.C., and Conaway, J.W. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. U. S. A. 97, 10430-10435. https://doi.org/10.1073/pnas.190332597
  18. Kennerson, M.L., Yiu, E.M., Chuang, D.T., Kidambi, A., Tso, S.C., Ly, C., Chaudhry, R., Drew, A.P., Rance, G., Delatycki, M.B., et al. (2013). A new locus for X-linked dominant Charcot-Marie-Tooth disease (CMTX6) is caused by mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. Hum. Mol. Genet. 22, 1404-1416. https://doi.org/10.1093/hmg/dds557
  19. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  20. Kirito, K., Hu, Y., and Komatsu, N. (2009). HIF-1 prevents the overproduction of mitochondrial ROS after cytokine stimulation through induction of PDK-1. Cell Cycle 8, 2844-2849. https://doi.org/10.4161/cc.8.17.9544
  21. Lang, A.E. and Lozano, A.M. (1998). Parkinson's disease. First of two parts. N. Engl. J. Med. 339, 1044-1053. https://doi.org/10.1056/NEJM199810083391506
  22. Langston, J.W., Ballard, P., Tetrud, J.W., and Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979-980. https://doi.org/10.1126/science.6823561
  23. Lesage, S. and Brice, A. (2009). Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet. 18, R48-R59. https://doi.org/10.1093/hmg/ddp012
  24. Meiser, J., Delcambre, S., Wegner, A., Jager, C., Ghelfi, J., d'Herouel, A.F., Dong, X., Weindl, D., Stautner, C., Nonnenmacher, Y., et al. (2016). Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol. Dis. 89, 112-125. https://doi.org/10.1016/j.nbd.2016.01.019
  25. Meulener, M., Whitworth, A.J., Armstrong-Gold, C.E., Rizzu, P., Heutink, P., Wes, P.D., Pallanck, L.J., and Bonini, N.M. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr. Biol. 15, 1572-1577. https://doi.org/10.1016/j.cub.2005.07.064
  26. Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., Iguchi-Ariga, S.M., and Ariga, H. (1997). DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231, 509-513. https://doi.org/10.1006/bbrc.1997.6132
  27. Park, J., Kim, S.Y., Cha, G.H., Lee, S.B., Kim, S., and Chung, J. (2005). Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 361, 133-139. https://doi.org/10.1016/j.gene.2005.06.040
  28. Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161. https://doi.org/10.1038/nature04788
  29. Park, S., Jeon, J.H., Min, B.K., Ha, C.M., Thoudam, T., Park, B.Y., and Lee, I.K. (2018). Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab. J. 42, 270-281. https://doi.org/10.4093/dmj.2018.0101
  30. Parsanejad, M., Bourquard, N., Qu, D., Zhang, Y., Huang, E., Rousseaux, M.W., Aleyasin, H., Irrcher, I., Callaghan, S., Vaillant, D.C., et al. (2014). DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress. PLoS One 9, e106601. https://doi.org/10.1371/journal.pone.0106601
  31. Pliss, L., Jatania, U., and Patel, M.S. (2016). Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency. Mol. Genet. Metab. Rep. 7, 78-86. https://doi.org/10.1016/j.ymgmr.2016.03.012
  32. Ramsden, D.B., Ho, P.W., Ho, J.W., Liu, H.F., So, D.H., Tse, H.M., Chan, K.H., and Ho, S.L. (2012). Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav. 2, 468-478. https://doi.org/10.1002/brb3.55
  33. Semenza, G.L., Jiang, B.H., Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., and Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537. https://doi.org/10.1074/jbc.271.51.32529
  34. Tanimoto, K., Makino, Y., Pereira, T., and Poellinger, L. (2000). Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298-4309. https://doi.org/10.1093/emboj/19.16.4298
  35. Ungerstedt, U. and Arbuthnott, G.W. (1970). Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485-493. https://doi.org/10.1016/0006-8993(70)90187-3
  36. Vasseur, S., Afzal, S., Tardivel-Lacombe, J., Park, D.S., Iovanna, J.L., and Mak, T.W. (2009). DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc. Natl. Acad. Sci. U. S. A. 106, 1111-1116. https://doi.org/10.1073/pnas.0812745106
  37. Xu, S., Yang, X., Qian, Y., and Xiao, Q. (2018). Parkinson's disease-related DJ-1 modulates the expression of uncoupling protein 4 against oxidative stress. J. Neurochem. 145, 312-322. https://doi.org/10.1111/jnc.14297
  38. Yang, J., Kim, M.J., Yoon, W., Kim, E.Y., Kim, H., Lee, Y., Min, B., Kang, K.S., Son, J.H., Park, H.T., et al. (2017). Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH). PLoS Genet. 13, e1006975. https://doi.org/10.1371/journal.pgen.1006975
  39. Zachar, Z., Marecek, J., Maturo, C., Gupta, S., Stuart, S.D., Howell, K., Schauble, A., Lem, J., Piramzadian, A., Karnik, S., et al. (2011). Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol. Med. (Berl.) 89, 1137-1148. https://doi.org/10.1007/s00109-011-0785-8
  40. Zhou, W. and Freed, C.R. (2005). DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J. Biol. Chem. 280, 43150-43158. https://doi.org/10.1074/jbc.M507124200