DOI QR코드

DOI QR Code

The optimum steel fiber reinforcement for prestressed concrete containment under internal pressure

  • Zheng, Zhi (College of Civil Engineering, Taiyuan University of Technology) ;
  • Sun, Ye (College of Civil Engineering, Taiyuan University of Technology) ;
  • Pan, Xiaolan (College of Civil Engineering, Taiyuan University of Technology) ;
  • Su, Chunyang (College of Civil Engineering, Taiyuan University of Technology) ;
  • Kong, Jingchang (School of Civil Engineering, Yantai University)
  • Received : 2021.09.24
  • Accepted : 2021.12.14
  • Published : 2022.06.25

Abstract

This paper investigates the optimum fiber reinforcement for prestressed concrete containment vessels (PCCVs) under internal pressure. To achieve this aim, steel fiber, which is the most widely used fiber type in current engineering applications, is adopted to constitute steel fiber-reinforced concrete (SFRC) to substitute the conventional concrete in the PCCV. The effects of characteristic parameters, 𝜆sf, of the steel fiber affecting significantly the mechanical behavior of the concrete are first taken into account. Partial or complete concrete regions of the PCCV are also considered to be replaced by SFRC to balance the economy and safety. By adopting the ABAQUS software, the ultimate bearing capacity and performance for the fiber-reinforced PCCV are scientifically studied and quantified, and the recommendations for the optimum way of fiber reinforcement are presented.

Keywords

Acknowledgement

This investigation is supported by National Natural Science Foundation of China (No. 51908397, 51808478), Shanxi Province Science Foundation for Youths (No. 201901D211025), China Postdoctoral Science Foundation (No. 2019M651075, No. 2020M670695), the Opening Project of State Key Laboratory of Green Building Materials (Grants No. 2021GBM02). These supports are greatly appreciated.

References

  1. T. Taira, Y. Sasaki, H. Shibata, H. Sato, T. Kubo, S. Kawakami, et al., Large scale seismic proving test of BMR reactor pressure vessel by Tadotsu table, in: Transactions of the 11th SMiRT Conference, Berlin, Germany, 1991.
  2. S. Nakamura, Y. Sasaki, K. Horibe, M. Nakajima, K. Hoshino, T. Takahashi, et al., Plan of the seismic proving test for reinforced concrete containment vessel (part1: test model and test model design), in: Transactions of the 14th SMiRT Conference, Lyon, France, 1997.
  3. S. Nakamura, K. Terada, T. Suzuki, M. Soejima, Y. Yamaura, H. Eto, et al., Seismic proving test of concrete containment vessels (part1: model tests of a curved shear wall for the PCCV), in: Transactions of the 11th WCEE Conference, Acapulco, 1996.
  4. T. Hirama, M. Goto, T. Hasegawa, M. Kanechika, T. Kei, T. Mieda, et al., Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 1: test model and pressure test, Nucl. Eng. Des. 235 (2005) 1335-1348. https://doi.org/10.1016/j.nucengdes.2005.01.002
  5. T. Hirama, M. Goto, K. Shiba, T. Kobayashi, R. Tanaka, S. Tsurumaki, et al., Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 2: results of shaking table tests, Nucl. Eng. Des. 235 (2005) 1349-1371. https://doi.org/10.1016/j.nucengdes.2005.01.001
  6. T. Hirama, M. Goto, H. Kumagai, Y. Naito, A. Suzuki, H. Abe, et al., Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 3. Evaluation of seismic safety margin, Nucl. Eng. Des. 237 (2007) 1128-1139. https://doi.org/10.1016/j.nucengdes.2007.01.009
  7. P. Varpasuo, The seismic reliability of VVER-1000 NPP prestressed containment building, Nucl. Eng. Des. 160 (3) (1996) 387-398. https://doi.org/10.1016/0029-5493(95)01116-1
  8. S.G. Cho, Y.H. Joe, Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea, Nucl. Eng. Des. 235 (17-19) (2005) 1867-1874. https://doi.org/10.1016/j.nucengdes.2005.05.021
  9. I.K. Choi, Y.S. Choun, S.M. Ahn, et al., Probabilistic seismic risk analysis of CANDU containment structure for near-fault earthquakes, Nucl. Eng. Des. 238 (6) (2008) 1382-1391. https://doi.org/10.1016/j.nucengdes.2007.11.001
  10. Y.N. Huang, A.S. Whittaker, N. Luco, Seismic performance assessment of baseisolated safety-related nuclear structures, Earthq. Eng. Struct. Dynam. 39 (13) (2010) 1421-1442. https://doi.org/10.1002/eqe.1038
  11. N. Nakamura, S. Akita, T. Suzuki, et al., Study of ultimate seismic response and fragility evaluation of nuclear power building using nonlinear three-dimensional finite element model, Nucl. Eng. Des. 240 (1) (2010) 166-180. https://doi.org/10.1016/j.nucengdes.2009.10.018
  12. R.A. Dameron, Y.R. Rashid, M.F. Hessheimer, Posttest analysis of a 1:4-scale prestressed concrete containment vessel model, in: Transactions of the 17h SMiRT Conference, Prague, Czech Republic, 2003.
  13. M.F. Hessheimer, S. Shibata, J.F. Costello, Functional and structural failure mode overpressurization tests of 1:4-scale prestressed concrete containment vessel model, in: Transactions of the 17h SMiRT Conference, Prague, Czech Republic, 2003.
  14. R.M. Parmar, T. Singh, I. Thangamani, N. Trivedi, R.K. Singh, Over-pressure test on barcom pre-stressed concrete containment, Nucl. Eng. Des. 269 (2014) 177-183. https://doi.org/10.1016/j.nucengdes.2013.08.027
  15. H.T. Hu, J.L. Liang, Ultimate analysis of BWR Mark III reinforced concrete containment subjected to internal pressure, Nucl. Eng. Des. 195 (2000) 1-11. https://doi.org/10.1016/S0029-5493(99)00163-6
  16. Y. Kenji, I. Katsuyoshi, W. Yukio, A. Masahito, Ultimate capacity analysis of 1/4 PCCV model subjected to internal pressure, Nucl. Eng. Des. 212 (2002) 357-379. https://doi.org/10.1016/S0029-5493(01)00498-8
  17. S. Ghavamian, A. Courtois, J.L. Valfort, Mechanical simulations of SANDIA II tests OECD ISP 48 benchmark, in: Transactions of the 18h SMiRT Conference, Beijing, China, 2005.
  18. H.G. Kwak, J.H. Kim, Numerical models for prestressing tendons in containment structures, Nucl. Eng. Des. 236 (2006) 1061-1080. https://doi.org/10.1016/j.nucengdes.2005.10.010
  19. A. Patrick, Analytic study of the steel liner near the equipment hatch in a 1:4 scale containment model, Nucl. Eng. Des. 238 (2008) 1641-1650. https://doi.org/10.1016/j.nucengdes.2007.12.013
  20. C. Zhang, J. Chen, J. Li, Ultimate internal pressure of prestressed concrete containment vessel analyzed by an integral constitutive model, KSCE J. Civ. Eng. 21 (2016) 2273-2280. https://doi.org/10.1007/s12205-016-1027-y
  21. J.C. Yan, Y.Z. Lin, Z.F. Wang, T. Fang, J.L. Ma, Failure mechanism of a prestressed concrete containment vessel in nuclear power plant subjected to accident internal pressure, Ann. Nucl. Energy 133 (2019) 610-622. https://doi.org/10.1016/j.anucene.2019.07.013
  22. Sabir Khan, Islam Saiful, Rizvi Zarghaam, Innovation in steel fiber reinforced concrete-a review, Int. J. Res. Eng. Appl. Sci. 3 (1) (2013) 21-33.
  23. China Association for Engineering Construction Standardization, Technical Specification for Fiber Reinforced Concrete Structures.CECS38:2004. China Planning Press.
  24. D.Y. Yoo, N. Banthia, Y.S. Yoon, Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios, Can. J. Civ. Eng. 44 (1) (2017) 18-28. https://doi.org/10.1139/cjce-2015-0384
  25. J. Xia, T. Chan, K.R. Mackie, et al., Sectional analysis for design of ultra-high performance fiber reinforced concrete beams with passive reinforcement, Eng. Struct. 160 (2018) 121-132. https://doi.org/10.1016/j.engstruct.2018.01.035
  26. J. Zhao, K. Li, F. Shen, et al., An analytical approach to predict shear capacity of steel fiber reinforced concrete coupling beams with small span-depth ratio, Eng. Struct. 171 (Sep.15) (2018) 348-361. https://doi.org/10.1016/j.engstruct.2018.05.072
  27. J. Zhao, H. Dun, A restoring force model for steel fiber reinforced concrete shear walls, Eng. Struct. 75 (Sep.15) (2014) 469-476. https://doi.org/10.1016/j.engstruct.2014.06.013
  28. L. Soufeiani, S.N. Raman, M.Z. Bin Jumaat, et al., Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading-A review, Eng. Struct. 124 (oct.1) (2016) 405-417. https://doi.org/10.1016/j.engstruct.2016.06.029
  29. Y.S. Choun, H.K. Park, Containment performance evaluation of prestressed concrete containment vessels with fiber reinforcement, Nucl. Eng. Technol. 47 (7) (2015) 884-894. https://doi.org/10.1016/j.net.2015.07.003
  30. J. Lubliner, J. Oliver, S. Oller, et al., A plastic-damage model for concrete, Int. J. Solid Struct. 25 (3) (1989) 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  31. The Ministry of Construction of the People's Republic of China, MOC. Code for Design of Concrete Structures. GB50010-2002, Chinese code, 2002.
  32. F. Sidorof, Description of anisotropic damage application to elasticity, in: Proceedings of the IUTAM Symposium on Physical Nonlinearites in Structural Analysis, Berlin Springer, 1981.
  33. ABAQUS, ABAQUS Standard User's Manual, Version 6.14, Dassault Systemes Corp, Providence, 2012.
  34. Y. Ding, F. Zhang, F. Torgal, Y. Zhang, Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory, Compos. Struct. 94 (2012) 2440-2449. https://doi.org/10.1016/j.compstruct.2012.02.025
  35. M. Eik, J. Puttonen, H. Herrmann, An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres, Compos. Struct. 121 (2015) 324-336. https://doi.org/10.1016/j.compstruct.2014.11.018
  36. S. Abdallah, M. Fan, X. Zhou, S. Le Geyt, Anchorage effects of various steel fibre architectures for concrete reinforcement, Int. J. Concr. Struct. Mater. 10 (2016) 325-335. https://doi.org/10.1007/s40069-016-0148-5
  37. F. Laranjeira, C. Molins, A. Aguado, Predicting the pullout response of inclined hooked steel fibers, Cement Concr. Res. 40 (2010) 1471-1487. https://doi.org/10.1016/j.cemconres.2010.05.005
  38. E. Zile, O. Zile, Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers, Cement Concr. Res. 44 (2013) 18-24. https://doi.org/10.1016/j.cemconres.2012.10.014
  39. R. Guo, Performance of steel fiber reinforced concrete (SFRC) and its application in civil engineering, Adv. Mater. Res. 788 (2013) 550-553. https://doi.org/10.4028/www.scientific.net/amr.788.550
  40. D.Y. Gao, Study on uniaxial tension stress-strain relation of steel fiber reinforced concrete, Water Power 11 (1991) 54-58.
  41. D.Y. Gao, Study on uniaxial compression stress-strain relation of steel fiber reinforced concrete, J. Hydraul. Eng. 10 (1991) 43-48.
  42. Q. Yang, W.Y. Zhou, X. Chen, Thermodynamic significance and basis of damage variables and equivalences, Int. J. Damage Mech. 19 (8) (2010) 898-910. https://doi.org/10.1177/1056789509359651
  43. Y. Chi, M. Yu, L. Huang, et al., Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity, Eng. Struct. 148 (oct.1) (2017) 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039
  44. The Ministry of Construction of the People's Republic of China, MOC, Standard for Design of Steel Structures. GB50017-2017, Chinese standard, 2017.
  45. Z.Z. Fang, in: Prestressed Structure Theory, China Construction Industry Press, 2013, pp. 205-208 (in Chinese).
  46. K. Holschemacher, T. Mueller, Y. Ribakov, Effect of steel fibres on mechanical properties of high-strength concrete, Mater. Des. 31 (2010) 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025
  47. A. Mukherjee, M. Joshi, FRPC reinforced concrete beam-column joints under cyclic excitation, Compos. Struct. 70 (2) (2005) 185-199. https://doi.org/10.1016/j.compstruct.2004.08.022
  48. C.G. Cho, Y.Y. Kim, L. Feo, D. Hui, Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar, Compos. Struct. 94 (7) (2012) 2246-2253. https://doi.org/10.1016/j.compstruct.2012.01.025
  49. J. Xie, R. Hu, Experimental study on rehabilitation of corrosion-damaged reinforced concrete beams with carbon fiber reinforced polymer, Construct. Build. Mater. 38 (2013) 708-716. https://doi.org/10.1016/j.conbuildmat.2012.09.023
  50. G.G. Triantafyllou, T.C. Rousakis, A.I. Karabinis, Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates, Compos. B Eng. 112 (2017) 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032