DOI QR코드

DOI QR Code

Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries

  • Kim, Hyunwoo (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Dong In (Department of Energy Science, Sungkyunkwan University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2022.02.17
  • Accepted : 2022.05.19
  • Published : 2022.08.28

Abstract

To satisfy the growing demand for high-performance batteries, diverse novel anode materials with high specific capacities have been developed to replace commercial graphite. Among them, cobalt hydroxides have received considerable attention as promising anode materials for lithium-ion batteries as they exhibit a high reversible capacity owing to the additional reaction of LiOH, followed by conversion reaction. In this study, we introduced graphene in the fabrication of Co(OH)2-based anode materials to further improve electrochemical performance. The resultant Co(OH)2/graphene composite exhibited a larger reversible capacity of ~1090 mAh g-1, compared with ~705 mAh g-1 for bare Co(OH)2. Synchrotron-based analyses were conducted to explore the beneficial effects of graphene on the composite material. The experimental results demonstrate that introducing graphene into Co(OH)2 facilitates both the conversion and reaction of the LiOH phase and provides additional lithium storage sites. In addition to insights into how the electrochemical performance of composite materials can be improved, this study also provides an effective strategy for designing composite materials.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. NRF-2019R1A2C2003731) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012748, HRD Program for Industrial Innovation).

References

  1. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 2011, 334(6058), 928-935. https://doi.org/10.1126/science.1212741
  3. Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, and Z. Chen, Nat. Energy, 2018, 3(4), 279-289. https://doi.org/10.1038/s41560-018-0108-1
  4. Z. X. Shu, R. S. McMillan, and J. J. Murray, J. Electrochem. Soc., 1993, 140(4), 922-927. https://doi.org/10.1149/1.2056228
  5. W. Zhao, W. Choi, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(3), 195-219. https://doi.org/10.33961/jecst.2020.00745
  6. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.-M. Cheng, ACS Nano, 2010, 4(6), 3187-3194. https://doi.org/10.1021/nn100740x
  7. H. Kim, W. Lee, W. Choi, S. Yun, E. Lee, and W.-S. Yoon, Adv. Funct. Mater, 2021, 32(17), 2110828.
  8. J. Zhou, J. Li, K. Liu, L. Lan, H. Song, and X. Chen, J. Mater. Chem. A, 2014, 2(48), 20706-20713. https://doi.org/10.1039/C4TA05073H
  9. M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, and F. M. Petrat, Chem. Commun., 2005, 12, 1566-1568.
  10. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol., 2008, 3, 31-35. https://doi.org/10.1038/nnano.2007.411
  11. M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, Chem. Rev., 2013, 113(7), 5364-5457. https://doi.org/10.1021/cr3001884
  12. X. Zuo, J. Zhu, P. Muller-Buschbaum, and Y. J. Cheng, Nano Energy, 2017, 31, 113-143. https://doi.org/10.1016/j.nanoen.2016.11.013
  13. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater., 2015, 14, 271-279. https://doi.org/10.1038/nmat4170
  14. H. Kim, H. Kim, S. Muhammad, J. H. Um, M. S. A. Sher Shah, P. J. Yoo, and W.-S. Yoon, J. Power Sources, 2020, 446, 227321. https://doi.org/10.1016/j.jpowsour.2019.227321
  15. Q. Xiao, Y. Fan, X. Wang, R. A. Susantyoko, and Q. Zhang, Energy Environ. Sci., 2014, 7(2), 655-661. https://doi.org/10.1039/C3EE43350A
  16. X. L. Huang, J. Chai, T. Jiang, Y. J. Wei, G. Chen, W. Q. Liu, D. Han, L. Niu, L. Wang, and X. B. Zhang, J. Mater. Chem., 2012, 22(8), 3404-3410. https://doi.org/10.1039/c2jm15377g
  17. H. Kim, W. I. Choi, Y. Jang, M. Balasubramanian, W. Lee, G. O. Park, S. B. Park, J. Yoo, J. S. Hong, Y. S. Choi, H. S. Lee, I. T. Bae, J. M. Kim, and W.-S. Yoon, ACS Nano, 2018, 12(3), 2909-2921. https://doi.org/10.1021/acsnano.8b00435
  18. Y. Q. Jing, J. Qu, W. Chang, Q. Y. Ji, H. J. Liu, T. T. Zhang, and Z. Z. Yu, ACS Appl. Mater. Interfaces, 2019, 11(36), 33091-33101. https://doi.org/10.1021/acsami.9b12088
  19. Y. S. He, D. W. Bai, X. Yang, J. Chen, X. Z. Liao, and Z. F. Ma, Electrochem. commun., 2010, 12(4), 570-573. https://doi.org/10.1016/j.elecom.2010.02.002
  20. H. Shi, Y. Dong, F. Zhou, J. Chen, and Z.-S. Wu, J. Phys. Energy, 2019, 1(1), 015002.
  21. S. D. Kelly and B. Ravel, in Methods of Solid Analysis, Part 5 - Mineralogical Methods (Eds: A. L. Ulery, L. R. Drees), Soil Science Society of America, Madison, WI, 2008, p. 387.
  22. H. Xie, S. Tang, Z. Gong, S. Vongehr, F. Fang, M. Li, and X. Meng, RSC Adv., 2014, 4(106), 61753-61758. https://doi.org/10.1039/C4RA10333E
  23. M. Aadil, S. Zulfiqar, M. F. Warsi, P. O. Agboola, and I. Shakir, J. Mater. Res. Technol., 2020, 9(6), 12697-12706. https://doi.org/10.1016/j.jmrt.2020.08.110
  24. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 1995, 270(5236), 590-593. https://doi.org/10.1126/science.270.5236.590
  25. X. Li, X. Sun, X. Hu, F. Fan, S. Cai, C. Zheng, and G. D. Stucky, Nano Energy, 2020, 77, 105143. https://doi.org/10.1016/j.nanoen.2020.105143
  26. Y. Kim, J. H. Lee, S. Cho, Y. Kwon, I. In, J. Lee, N. H. You, E. Reichmanis, H. Ko, K. T. Lee, H. K. Kwon, D. H. Ko, H. Yang, and B. Park, ACS Nano, 2014, 8(7), 6701-6712. https://doi.org/10.1021/nn500218m
  27. S. Permien, S. Indris, A. L. Hansen, M. Scheuermann, D. Zahn, U. Schurmann, G. Neubuser, L. Kienle, E. Yegudin, and W. Bensch, ACS Appl. Mater. Interfaces, 2016, 8(24), 15320-15332. https://doi.org/10.1021/acsami.6b03185
  28. J. H. Um, K. Palanisamy, M. Jeong, H. Kim, and W.-S. Yoon, ACS Nano, 2019, 13(5), 5674-5685. https://doi.org/10.1021/acsnano.9b00964
  29. E. Ventosa, W. Xia, S. Klink, F. La Mantia, M. Muhler, and W. Schuhmann, Electrochim. Acta, 2012, 65, 22-29. https://doi.org/10.1016/j.electacta.2011.12.128
  30. Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang, and C. P. Grey, Nat. Mater., 2013, 12, 1130-1136. https://doi.org/10.1038/nmat3784
  31. S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J.-M. Tarascon, J. Electrochem. Soc., 2002, 149(5), A627-A634. https://doi.org/10.1149/1.1467947
  32. P. Balaya, H. Li, L. Kienle, and J. Maier, Adv. Funct. Mater., 2003, 13, 621-625. https://doi.org/10.1002/adfm.200304406
  33. J. Jamnik and J. Maier, Phys. Chem. Chem. Phys., 2003, 5(23), 5215-5220. https://doi.org/10.1039/b309130a
  34. H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana, and W.-S. Yoon, Chem. Rev., 2020, 120(14). 6934-6976. https://doi.org/10.1021/acs.chemrev.9b00618
  35. M. Keppeler and M. Srinivasan, ChemElectroChem, 2017, 4(11), 2727-2754. https://doi.org/10.1002/celc.201700747
  36. H. Kim, D. I. Kim, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 13(1), 32-53.
  37. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25. https://doi.org/10.33961/jecst.2019.00619
  38. J. Yao, Y. Li, R. Huang, J. Jiang, S. Xiao, and J. Yang, Ionics, 2021, 27, 65-74. https://doi.org/10.1007/s11581-020-03793-1
  39. X.-Y. Shan, G. Zhou, L.-C. Yin, W.-J. Yu, F. Li, and H.-M. Cheng, J. Mater. Chem. A, 2014, 2(42), 17808-17814. https://doi.org/10.1039/C4TA04460F
  40. S. Akhtar, W. Lee, M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 12(1), 1-20. https://doi.org/10.33961/jecst.2020.01564
  41. J. Kim, S. Park, S. Hwang, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2021, 13(1), 19-31.
  42. A. P. Cohn, L. Oakes, R. Carter, S. Chatterjee, A. S. Westover, K. Share, and C. L. Pint, Nanoscale, 2014, 6(9), 4669-4675. https://doi.org/10.1039/C4NR00390J
  43. E. Liu, J. Wang, C. Shi, N. Zhao, C. He, J. Li, and J. Z. Jiang, ACS Appl. Mater. Interfaces, 2014, 6(20), 18147-18151. https://doi.org/10.1021/am5050423
  44. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, and H.-M. Cheng, Nano Energy, 2012, 1(1), 107-131. https://doi.org/10.1016/j.nanoen.2011.11.001
  45. T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, and E. Liu, J. Phys. Chem. C, 2017, 121(36), 19559-19567. https://doi.org/10.1021/acs.jpcc.7b04642