DOI QR코드

DOI QR Code

Self-Illuminated Smart Window Based on Polymer-Dispersed Liquid Crystal Mixed with Cu-doped ZnS

  • Kim, Eun Mi (Green Energy and Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Heo, Gi-Seok (Green Energy and Nano Technology R&D Group, Korea Institute of Industrial Technology)
  • Received : 2022.07.18
  • Accepted : 2022.08.11
  • Published : 2022.11.01

Abstract

Novel self-illuminated smart windows were fabricated consisting of Cu-doped ZnS (ZnS:Cu) powder and polymer-dispersed liquid crystal (PDLC). This smart window shows not only switchable transparency but also self-illumination without any attachable luminous body. Its electro-optical characteristics, transmittance, and luminance were investigated in relation to various applied voltages and composition ratios. The optical transmittance and luminous intensity increased with increasing applied voltages. However, the optical transmittance decreased with increasing ZnS:Cu powder content. One of the self-illuminated smart windows, which was fabricated with 9 wt% of ZnS:Cu, achieved the optical transmittance of 60.5% (at 550 nm) and the luminance of 11.0 cd/m2 at 100 V. This smart window could be used as a normal switchable smart window in daytime and light-emitting signage at night.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Development of Core Technologies for a Smart Mobility (KITECH JA-22-0005)".

References

  1. X. Guo, Z. Xu, J. Huang, Y. Zhang, X. Liu, and W. Guo, Mater. Lett., 244, 92 (2019). [DOI: https://doi.org/10.1016/j.matlet.2019.02.070]
  2. Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, and Y. Long, Adv. Energy Mater., 9, 1902066 (2019). [DOI: https://doi.org/10.1002/aenm.201902066]
  3. N. Aste, M. Buzzetti, C. Del Pero, R. Fusco, D. Testa, and F. Leonforte, Energy Procedia, 105, 967 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.427]
  4. R. Onodera, Y. Seki, S. Seki, K. Yamada, Y. Sawada, and T. Uchida, Appl. Phys. Express, 6, 026503 (2013). [DOI: https://doi.org/10.7567/APEX.6.026503]
  5. J. Liu, X. Liu, and Z. Zhen, Mater. Lett., 163, 142 (2016). [DOI: https://doi.org/10.1016/j.matlet.2015.10.060]
  6. G. D. Filpo, K. Armentano, E. Pantuso, A. I. Mashin, G. Chidichimo, and F. P. Nicoletta, Liq. Cryst., 46, 986 (2019). [DOI: https://doi.org/10.1080/02678292.2019.1566506]
  7. T. Uchida, M. Shibasaki, T. Matsuzaki, and Y. Nagata, Appl. Phys. Express, 6, 041604 (2013). [DOI: https://doi.org/10.7567/APEX.6.041604]
  8. D. C. Choe, G. W. Kim, R. Lampande, and J. H. Kwon, SID 2015 DIGEST, 46, 821 (2015). [DOI: https://doi.org/10.1002/sdtp.10343]
  9. L. Yang, X. Xu, Y. Yuan, Z. Li, and S. He, Optical Materials Express, 9, 4483 (2019). [DOI: https://doi.org/10.1364/OME.9.004483]
  10. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, and H. Manuspiya, Solid State Sci., 14, 299 (2012). [DOI: https://doi.org/10.1016/j.solidstatesciences.2011.12.005]
  11. T. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, and V. B. Khachatryan, Thin Solid Films, 515, 513 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.12.284]
  12. M. Warkentin, F. Bridges, S. A. Carter, and M. Anderson, Phys. Rev. B, 75, 075301 (2007). [DOI: https://doi.org/10.1103/PhysRevB.75.075301]
  13. E. M. Kim, I.-S. Choi, J.-P. Oh, Y.-B. Kim, J.-H. Lee, Y.-S. Choi, J.-D. Cho, Y.-B. Kim, and G.-S. Heo, Jpn. J. Appl. Phys., 53, 095505 (2014). [DOI: https://doi.org/10.7567/JJAP.53.095505]
  14. S. W. Shin, J. P. Oh, C. W. Hong, E. M. Kim, J. J. Woo, G. S. Heo, and J. H. Kim, Applied Materials and Interfaces, 8, 1098 (2016). [DOI: https://doi.org/10.1021/acsami.5b07594]
  15. A. G. Fischer, J. Electrochem. Soc., 110, 733 (1963). [DOI: https://doi.org/10.1149/1.2425863]