DOI QR코드

DOI QR Code

Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum

  • Hye-Young, Yu (Laboratory of Red Ginseng Products, Korea Ginseng Corporation) ;
  • Dong-Bin, Rhim (Laboratory of Red Ginseng Products, Korea Ginseng Corporation) ;
  • Sang-Kyu, Kim (Laboratory of Red Ginseng Products, Korea Ginseng Corporation) ;
  • O-Hyun, Ban (Ildong Bioscience) ;
  • Sang-Ki, Oh (Ildong Bioscience) ;
  • Jiho, Seo (Laboratory of Red Ginseng Products, Korea Ginseng Corporation) ;
  • Soon-Ki, Hong (Laboratory of Red Ginseng Products, Korea Ginseng Corporation)
  • Received : 2021.10.14
  • Accepted : 2022.09.27
  • Published : 2023.01.02

Abstract

Background: Red ginseng marc, the residue of red ginseng left after water extraction, is rich in dietary fiber. Dietary fiber derived from fruits or vegetables can promote the proliferation of probiotics, and it is a key technology in the food industry to increase the productivity of probiotics by adding growth-enhancing substances such as dietary fiber. In this study, the effect of red ginseng dietary fiber (RGDF) on the growth of probiotic bacterial strains was investigated at the phenotypic and genetic levels. Methods: We performed transcriptome profiling of Lactiplantibacillus plantarum IDCC3501 in two phases of culture (logarithmic (L)-phase and stationary (S)-phase) in two culture conditions (with or without RGDF) using RNA-seq. Differentially expressed genes (DEGs) were identified and classified according to Gene Ontology terms. Results: The growth of L.plantarum IDCC3501 was enhanced in medium supplemented with RGDF up to 2%. As a result of DEG analysis, 29 genes were upregulated and 30 were downregulated in the RGDF-treated group in the L-phase. In the S-phase, 57 genes were upregulated and 126 were downregulated in the RGDF-treated group. Among the upregulated genes, 5 were upregulated only in the L-phase, 10 were upregulated only in the S-phase, and 3 were upregulated in both the L- and S-phases. Conclusions: Transcriptome analysis could be a valuable tool for elucidating the molecular mechanisms by which RGDF promotes the proliferation of L.plantarum IDCC3501. This growth-promoting effect of RGDF is important, since RGDF could be used as a prebiotic source without additional chemical or enzymatic processing.

Keywords

References

  1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804-10.  https://doi.org/10.1038/nature06244
  2. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev 2012;70(Suppl 1):S38-44.  https://doi.org/10.1111/j.1753-4887.2012.00493.x
  3. FAO/WHO. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Report from FAO/WHO Expert Consultation 2001;1-4. 
  4. Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol 2017;30:629-39.  https://doi.org/10.20524/aog.2017.0192
  5. Sharma V, Sharma N, Sheikh I, Kumar V, Sehrawat N, Yadav M, Ram G, Sankhyan A, Sharma AK. Probiotics and prebiotics having broad spectrum anticancer therapeutic potential: recent trends and future perspectives. Curr Pharmacol Rep 2021;7:67-79.  https://doi.org/10.1007/s40495-021-00252-x
  6. Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: a review. J Food Drug Anal 2018;26:927-39.  https://doi.org/10.1016/j.jfda.2018.01.002
  7. Mazloom K, Siddiqi I, Covasa M. Probiotics: how effective are they in the fight against obesity? Nutrients 2019;11:258.  https://doi.org/10.3390/nu11020258
  8. Yang SY, Chae SA, Bang WY, Lee M, Ban OH, Kim SJ, Jung YH, Yang J. Anti-inflammatory potential of Lactiplantibacillus plantarum IDCC 3501 and its safety evaluation. Braz J Microbiol 2021;52:2299-306.  https://doi.org/10.1007/s42770-021-00603-2
  9. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491-502.  https://doi.org/10.1038/nrgastro.2017.75
  10. Walton GE, Swann JR, Gibson GR. Prebiotics. The Prokaryotes 2013:25-43. 
  11. So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42:549-61.  https://doi.org/10.1016/j.jgr.2018.05.002
  12. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435-43.  https://doi.org/10.1016/j.jgr.2016.08.004
  13. Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2022;46:481-8.  https://doi.org/10.1016/j.jgr.2021.11.004
  14. Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;36:27-39.  https://doi.org/10.5142/jgr.2012.36.1.27
  15. Yu S, Xia H, Guo Y, Qian X, Zou X, Yang H, Yin M, Liu H. Ginsenoside Rb1 retards aging process by regulating cell cycle, apoptotic pathway and metabolism of aging mice. J Ethnopharmacol 2020;255:112746.  https://doi.org/10.1016/j.jep.2020.112746
  16. Park YR, Han IJ, Kim MY, Choi SH, Shin DW, Chun SS. Quality characteristics of sponge cake prepared with red ginseng marc powder. Korean J Food Cook Sci 2008;24:236-42. 
  17. Zang OH, Park J, Kim SH, Lee SY, Moon BK. Quality characteristics of yackwa with red ginseng marc powder. Korean J Food Cook Sci 2014;30:800-5.  https://doi.org/10.9724/kfcs.2014.30.6.800
  18. Lee JY, Lim T, Kim J, Hwang KT. Physicochemical characteristics and sensory acceptability of crackers containing red ginseng marc. J Food Sci Technol 2022;59:212-9.  https://doi.org/10.1007/s13197-021-05002-x
  19. Shin SH, Choi WS. Physiochemical properties of chicken breast sausage with red ginseng marc powder. Food Sci Anim Resour 2022;42:486-503.  https://doi.org/10.5851/kosfa.2022.e17
  20. Park SH, Kim WJ. Study of hongsambak for medicinal foods applications: nutritional composition, antioxidants contents and antioxidative activity. J Physiol Pathol Korean Med 2006;20:449-54. 
  21. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017;8:172-84.  https://doi.org/10.1080/19490976.2017.1290756
  22. Jatuponwiphat T, Namrak T, Nitisinprasert S, Nakphaichit M, Vongsangna W. Integrative growth physiology and transcriptome profiling of probiotic Limosilactobacillus reuteri KUB-AC5. Peer J 2021;9:e12226.  https://doi.org/10.7717/peerj.12226
  23. Liu ZS, Lin CF, Chen PW. Transcriptome analysis of Lactobacillus rhamnosus GG strain treated with prebiotic-bovine lactoferrin under a cold environment. J Food Drug Anal 2021;29:402e418.  https://doi.org/10.38212/2224-6614.3369
  24. Park HW, In G, Han ST, Lee MW, Kim SY, Kim KT, Cho BG, Han GH, Chang IM. Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography. J Ginseng Res 2013;37:457-67.  https://doi.org/10.5142/jgr.2013.37.457
  25. McCleary BV, DeVries JW, Rader JI, Cohen G, Prosky L, Mugford DC, Champ M, Okuma K. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study. J AOAC Int 2010;93:221-33.  https://doi.org/10.1093/jaoac/93.1.221
  26. Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010;25:136e8.  https://doi.org/10.1093/bioinformatics/btp612
  27. Storey JD, Tibshirani R. Statistical significance for genome wide studies. Proc Natl Acad Sci USA 2003;100:9440-5.  https://doi.org/10.1073/pnas.1530509100
  28. Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in € plant genomics. Int J Plant Genomics 2008:619832.  https://doi.org/10.1155/2008/619832
  29. Kim TY, Kim YH, Moon JS, Kwon HS, Choi SK. Complete genome sequence of probiotic Lactobacillus plantarum IDCC3501 isolated from kimchi. Korean J Microbiol 2019;55:438-40. 
  30. Andrade RM, Silva S, Costa CM, Veiga M, Costa E, Ferreira MS, Goncalves EC, Pintado ME. Potential prebiotic effect of fruit and vegetable byproducts flour using in vitro gastrointestinal digestion. Food Res Int 2020;137:109354.  https://doi.org/10.1016/j.foodres.2020.109354
  31. Massa NM, Menezes FN, Albuquerque TM, Oliveira SP, Lima MS, Magnani M, Souza EL. Effects of digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-product on growth and metabolism of Lactobacillus and Bifidobacterium indicate prebiotic properties. LWT - Food Science and Technology 2020;131:109766.  https://doi.org/10.1016/j.lwt.2020.109766
  32. Sung WS, Lee DG. The Combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 2008;31:1614-7.  https://doi.org/10.1248/bpb.31.1614
  33. Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, Wang T, Ren G. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother Res 2019;1-11. 
  34. Kriner MA, Subramaniam AR. The serine transporter SdaC prevents cell lysis upon glucose depletion in Escherichia coli. Microbiology Open 2020;9:e960.  https://doi.org/10.1002/mbo3.960
  35. Liu SQ, Holland R, McJarrow P, Crow VL. Serine metabolism in Lactobacillus plantarum. Int J Food Microbiol 2003;89:265-73.  https://doi.org/10.1016/S0168-1605(03)00157-0
  36. Fernandez M, Zuniga M. Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 2006;32:155-83.  https://doi.org/10.1080/10408410600880643
  37. Jingjing E, Lili M, Zichao C, Rongze M, Qiaoling Z, Ruiyin S, Zongbai H, Junguo W. Effects of buffer salts on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 based on transcriptome and proteome analyses. Food Chem 2020;326:126849.  https://doi.org/10.1016/j.foodchem.2020.126849
  38. Zichao C, Jingjing E, Rongze M, Jingya Z, Yao C, Wang R, Zhang Q, Yang Y, Lia J, Wang J. The effect of aspartic acid on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 and its inherent mechanism. LWT 2022;155:112929.  https://doi.org/10.1016/j.lwt.2021.112929
  39. Zeng X, Pan Q, Guo Y, Wu Z, Sun Y, Dang Y, Cao J, He J, Pan D. Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis. J Proteomics 2019;194:70-8.  https://doi.org/10.1016/j.jprot.2018.12.021
  40. Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z. Identification and characterization of (1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry 2008;47:3426-34.  https://doi.org/10.1021/bi7023755
  41. Bentley R, Meganathan R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 1982;46:241-80.  https://doi.org/10.1128/mr.46.3.241-280.1982
  42. Kang MJ, Baek KR, Lee YR, Kim GH, Seo SO. Production of vitamin K by wild-type and engineered microorganisms. Microorganisms 2022;10:554.  https://doi.org/10.3390/microorganisms10030554
  43. Bogicevic B, Berthoud H, Portmann R, Bavan T, Meile L, Irmler S. Cysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase. FEMS Microbiol Lett 2016;363:fnw012.  https://doi.org/10.1093/femsle/fnw012
  44. Schnell R, Oehlmann W, Sandalova T, Braun Y, Huck C, Maringer M. Tetrahydrodipicolinate N-Succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion. PLoS One 2012;7:e31133.   https://doi.org/10.1371/journal.pone.0031133