DOI QR코드

DOI QR Code

Seismic control performance and experimental study of multiple pounding tuned rolling mass damper

  • Peiran Fan (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Shujin Li (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Ling Mao (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2022.05.08
  • Accepted : 2023.03.08
  • Published : 2023.04.25

Abstract

Multiple pounding tuned rolling mass damper (MPTRMD) distributed in the cavity of voided slabs is proposed to passively control multi-story frame structures, which disperses the mass of the oscillator to multiple dampers so that the control device can be miniaturized without affecting the vibration control performance. The mechanism and the differential motion equations of the MPTRMD-controlled multi-degree-of-freedom system are derived based on the Lagrange principle. Afterward, this advanced RMD is applied to a simplified 20-floor steel frame to evaluate the seismic control performance in the numerical analysis. A four-storey frame structure equipped with MPTRMD is then taken for a shaking table test to verify its effectiveness of control performance. The pounding mechanism has been detailed studied numerically and experimentally as well. The numerical and experimental results show that the proposed damper is practically promising not only for its prominent control performance but also for its lightweight and space-saving. Additionally, the pounding mechanism influenced by the variable impact parameters exhibits a balance between the two effects of motional limitations and energy dissipation.

Keywords

Acknowledgement

The authors would like to acknowledge the support provided by National Natural Science Foundation of China (NSFC, contract number: 51678464), and Hubei Key Laboratory of Roadway Bridge and Structure Engineering (Wuhan University of Technology) (No. DQJJ201901).

References

  1. Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802.
  2. Akehashi, H. and Takewaki, I. (2022), "Bounding of earthquake response via critical double impulse for efficient optimal design of viscous dampers for elastic-plastic moment frames", Jpn. Archit. Rev., 5(2), 131-149. https://doi.org/10.1002/2475-8876.12262.
  3. Akehashi, H. and Takewaki, I. (2022), "Resilience evaluation of elastic-plastic high-rise buildings under resonant long-duration ground motion", Jpn. Archit. Rev., 5(4), 373-385. https://doi.org/10.1002/2475-8876.12280.
  4. Baigoly, M., Shargh, F.H. and Rofooei, F.R. (2020), "A new study in designing MTMDs in SDOF and MDOF systems based on the spectral analysis method", Earthq. Struct., 19(4), 243-259. https://doi.org/10.12989/eas.2020.19.4.243.
  5. Brennan, M.J. and Gatti, G. (2012), "The characteristics of a nonlinear vibration neutralizer", Eng. Struct., 331(13), 3158-3171. https://doi.org/10.1016/j.jsv.2012.02.010.
  6. Chung, J.H., Choi, H.K., Lee, S.C. and Choi, C.S. (2011), "Shear capacity of biaxial hollow slab with donut type hollow sphere", Proc. Eng., 14, 2219-2222. https://doi.org/10.1016/j.proeng.2011.07.279.
  7. Churakov, A. (2014), "Biaxial hollow slab with innovative types of voids", Constr. Unique Build. Struct., 6(21), 70-88.
  8. Conroy, G.C. and Sideris, P. (2021), "Exploring energy harvesting and vibration mitigation in tall buildings accounting for wind and seismic loads", Eng. Struct., 247(15), 113126. https://doi.org/10.1016/j.engstruct.2021.113126.
  9. Daniel, Y. and Lavan, O. (2015), "Optimality criteria based seismic design of multiple tuned-mass-dampers for the control of 3D irregular buildings", Earthq. Struct., 8(1), 77-100. https://doi.org/10.12989/eas.2015.8.1.077.
  10. Domenico, D., Ricciardi, G. and Takewaki, I. (2019), "Design strategies of viscous dampers for seismic protection of building structures: A review", Soil Dyn. Earthq. Eng., 118, 144-165. https://doi.org/10.1016/j.soildyn.2018.12.024.
  11. Elias, S. and Matsagar, V. (2019), "Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations", J. Earthq. Eng., 23(7), 1137-1172. https://doi.org/10.1080/13632469.2017.1351407.
  12. Farhangdoust, S., Eghbali, P. and Younesian, D. (2020), "Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges", Earthq. Struct., 18(3), 313-320. https://doi.org/10.12989/eas.2020.18.3.313.
  13. Giuseppe, O. and George, D.M. (2020), "Special issue: Base isolation in the Southern EU: Current status and research issues", Soil Dyn. Earthq. Eng., 131, 106036. https://doi.org/10.1016/j.soildyn.2020.106036.
  14. Toshihiro, I. and Ikeda, K. (1980), "On the houde damper for a damped vibration system", Bull. JSME, 23(176), 273-279. https://doi.org/10.1299/jsme1958.23.273.
  15. Takewaki, I. and Akehashi, H. (2021), "Comprehensive review of optimal and smart design of nonlinear building structures with and without passive dampers subjected to earthquake loading", Front. Built. Environ., 7, 631114. https://doi.org/10.3389/fbuil.2021.631114.
  16. Jankowski, R. (2005), "Non-linear viscoelastic modelling of earthquake-induced structural pounding", Earthq. Eng. Struct. Dyn., 34(6), 595-611. https://doi.org/10.1002/eqe.434.
  17. Jankowski, R. (2006), "Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding", Earthq. Eng. Struct. Dyn., 35(4), 517-524. https://doi.org/10.1002/eqe.537.
  18. Kareem, A. and Kline, S. (1995), "Performance of multiple mass dampers under random loading", J. Struct. Eng., 121(2), 348-361. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(348).
  19. Krenk, S. (2005), "Frequency analysis of the tuned mass damper", J. Appl. Mech., 72(6), 936-942. https://doi.org/10.1115/1.2062867.
  20. Li, S., Fu, L. and Kong, F. (2015), "Seismic response reduction of structures equipped with a voided biaxial slab-based tuned rolling mass damper", Shock Vib., 2015, 1-15. https://doi.org/10.1155/2015/760394.
  21. Li, S., Sun, L. and Kong, F. (2019), "Vibration control performance analysis and shake-table test of a pounding tuned rotary mass damper under the earthquake", Shock Vib., 2019, 1-14. https://doi.org/10.1155/2019/4038657.
  22. Lin, W., Lin, Y. and Song, G. (2016), "Multiple pounding tuned mass damper (MPTMD) control on benchmark tower subjected to earthquake excitations", Earthq. Struct., 11(6), 1123-1141. https://doi.org/10.12989/eas.2016.11.6.1123.
  23. Pirner, M. (2002), "Actual behaviour of a ball vibration absorber", J. Wind Eng. Ind. Aerodyn., 90(8), 987-1005. https://doi.org/10.1016/S0167-6105(02)00215-5.
  24. Rahman, M.S., Hassan, M.K. and Chang, S. (2016), "Adaptive multiple tuned mass dampers based on modal parameters for earthquake response reduction in multi-story buildings", Adv. Struct. Eng., 20(6), 1375-1389. https://doi.org/10.1177/1369433216678863.
  25. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3.
  26. Rice, H.J. (1993), "Design of multiple vibration absorber systems using modal data", J. Sound Vib., 160(2), 378-385. https://doi.org/10.1006/jsvi.1993.1033.
  27. Schnellenbach-Held, M. and Pfeffer, K. (2002), "Punching behavior of biaxial hollow slabs", Cement Concrete Compos., 24(6), 551-556. https://doi.org/10.1016/S0958-9465(01)00071-3.
  28. Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, London, UK.
  29. Xu, K. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng. Struct. Dyn., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203.
  30. Yamaguchi, H. and Harnpornchai, N. (1993), "Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations", Earthq. Eng. Struct. Dyn., 22(1), 51-62. https://doi.org/10.1002/eqe.4290220105.
  31. Yao, J.T. (1972), "Concept of structural control", J. Struct. Div., 98(7), 1567-1574. http://doi.org/10.1061/JSDEAG.0003280.