DOI QR코드

DOI QR Code

Comprehensive Investigation on the Prevalence and Risk Factors of Coexistence of Age-related Loss of Skeletal Mu scle Mass and Obesity among Males in Their 40s

  • Received : 2023.05.26
  • Accepted : 2023.06.15
  • Published : 2023.08.31

Abstract

PURPOSE: This study examined the prevalence and specific risk factors in males aged 40-49 years with the coexistence of age-related loss of skeletal muscle mass and obesity (CALSMO). METHODS: The current study analyzed the data obtained from a cross-sectional study involving a sample of 1,218 men who resided in the community and fell within the age range of 40 to 49 years. Multiple risk factors were examined: age, height, weight, body mass index, waist circumference, skeletal muscle mass index, smoking and drinking habits, systolic and diastolic blood pressure, fasting glucose levels, and triglyceride and cholesterol levels. All data were analyzed via complex sampling analysis. RESULTS: The coexistence of age-related loss of skeletal muscle mass and obesity in males was 2.94% (95% CI: 2.06-4.17). The clinical risk factors were low height, high weight, body mass index, waist circumference, skeletal muscle index, systolic blood pressure, diastolic blood pressure, and fast glucose (p < .05). CONCLUSION: The study identifies the prevalence and risk factors for CALSMO among adults in the community. These findings contribute to the existing literature on CALSMO and highlight potential risk factors associated with CALSMO development in males aged 40-49 years.

Keywords

References

  1. Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Fac. 2022; 15(3):321-35. https://doi.org/10.1159/000521241
  2. Donini LM, Busetto L, Bauer JM, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr. 2020; 39(8):2368-88. https://doi.org/10.1016/j.clnu.2019.11.024
  3. Kulik CT, Ryan S, Harper S, et al. Aging populations and management. Academy of Management Briarcliff Manor, NY. 2014. 929-35.
  4. Yang YS, Han B-D, Han K, et al. Obesity fact sheet in Korea, 2021: trends in obesity prevalence and obesity-related comorbidity incidence stratified by age from 2009 to 2019. Jour Obes Metab Syndr. 2022;31(2):169.
  5. Hecker J, Freijer K, Hiligsmann M, et al. Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life. BMC Public Health. 2022;22(1):1-13. https://doi.org/10.1186/s12889-021-12274-7
  6. Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obesity. 2004;12(6):887.
  7. Zhang X, Xie X, Dou Q, et al. Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: a updated meta-analysis. BMC Geriatr. 2019;19(1):1-14. https://doi.org/10.1186/s12877-018-1019-5
  8. Prado CM, Siervo M, Mire E, et al. A population-based approach to define body-composition phenotypes. Americ J of Clin Nutrit. 2014;99(6):1369-77. https://doi.org/10.3945/ajcn.113.078576
  9. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec Longitudinal Study. Obesity. 2009;17(11):2082-8. https://doi.org/10.1038/oby.2009.109
  10. Dufour AB, Hannan MT, Murabito JM, et al. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the framingham study. J Geront: Series A. 2012;68(2):168-74. https://doi.org/10.1093/gerona/gls109
  11. Petroni ML, Caletti MT, Dalle Grave R, et al. Prevention and treatment of sarcopenic obesity in women. Nutrients. 2019;11(6):1302.
  12. Rossi AP, Rubele S, C alugi S, et al. Weight cycling as a risk factor for low muscle mass and strength in a population of males and females with obesity. Obesity. 2019;27(7):1068-75. https://doi.org/10.1002/oby.22493
  13. Choi S, Chon J, Lee SA, et al. Central obesity is associated with lower prevalence of sarcopenia in older women, but not in men: a cross-sectional study. BMC Geriatr. 2022;22(1):1-9. https://doi.org/10.1186/s12877-021-02658-0
  14. Hwang J, Park S. Gender-specific risk factors and prevalence for sarcopenia among community-dwelling young-old adults. Int J Environ Res Public Health. 2022;19(12):7232.
  15. Hwang J, Park S. Sex Differences of sarcopenia in an elderly asian population: the prevalence and risk factors. Int J Environ Res Public Health. 2022;19(19): 11980.
  16. Hwang J, Park S. Gender-specific prevalence and risk factors of sarcopenic obesity in the Korean elderly population: a nationwide cross-sectional study. Int J Environ Res Public Health. 2023;20(2):1140.
  17. Lexell J, Downham D, Sjostrom M. Distribution of different fibre types in human skeletal muscles. Fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci. 1986;72(2-3):211-22. https://doi.org/10.1016/0022-510X(86)90009-2
  18. Kehayias JJ, Fiatarone MA, Zhuang H, et al. Total body potassium and body fat: relevance to aging. Am J Clin Nutr. 1997;66(4):904-10. https://doi.org/10.1093/ajcn/66.4.904
  19. Janssen I, Heymsfield SB, Wang ZM, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985). 2000;89(1):81-8. https://doi.org/10.1152/jappl.2000.89.1.81
  20. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889-96. https://doi.org/10.1046/j.1532-5415.2002.50216.x
  21. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afy169
  22. National Health and Nutrition Examination Survey 2017-March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. In: National Center for Health S, National Health Statistics Reports. Hyattsville, MD. http://dx.doi.org/10.15620/cdc:106273. 2021.
  23. Reijnierse EM, de van der Schueren MAE, Trappenburg MC, et al. Lack of knowledge and availability of diagnostic equipment could hinder the diagnosis of sarcopenia and its management. PLoS One. 2017;12(10):e0185837.
  24. Mehiret G, Molla A, Tesfaw A. Knowledge on risk factors and practice of early detection methods of breast cancer among graduating students of Debre Tabor University, Northcentral Ethiopia. BMC Womens Health. 2022;22(1):183.
  25. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547-58. https://doi.org/10.1093/gerona/glu010
  26. World Health Organization. Regional office for the western p. the asia-pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia. 2000.
  27. Atkins JL, Whincup PH, Morris RW, et al. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62(2):253-60. https://doi.org/10.1111/jgs.12652
  28. Sanada K, Chen R, Willcox B, et al. Association of sarcopenic obesity predicted by anthropometric measurements and 24-y all-cause mortality in elderly men: The Kuakini Honolulu Heart Program. Nutrition. 2018;46:97-102. https://doi.org/10.1016/j.nut.2017.09.003
  29. Priego T, Martin AI, Gonzalez-Hedstrom D, et al. Chapter twenty - role of hormones in sarcopenia. In: Litwack G, Vitam Horm. Academic Press. 2021. pp.535-70.
  30. Cooney C, Ryan L. Resting metabolic rate in older adults with overweight and obesity: differences in measured versus predicted values. Proc Nutr Soc. 2021;80(OCE5).
  31. Lu CW, Yang KC, Chang HH, et al. Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract. 2013;7(4):e301-7. https://doi.org/10.1016/j.orcp.2012.02.003
  32. Perna S, Peroni G, Faliva MA, et al. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res. 2017;29(6):1249-58. https://doi.org/10.1007/s40520-016-0701-8
  33. Du Y, Wang X, Xie H, et al. Sex differences in the prevalence and adverse outcomes of sarcopenia and sarcopenic obesity in community dwelling elderly in East China using the AWGS criteria. BMC Endocr Disord. 2019;19(1):109.
  34. Hulett NA, Scalzo RL, Reusch JEB. Glucose uptake by skeletal muscle within the contexts of type 2 diabetes and exercise: an integrated approach. Nutrients. 2022;14(3).
  35. Yin T, Zhang JX, Wang FX, et al. The association between sarcopenic obesity and hypertension, diabetes, and abnormal lipid metabolism in Chinese adults. Diabetes Metab Syndr Obes. 2021;14:1963-73. https://doi.org/10.2147/DMSO.S308387
  36. Ferreira I, Snijder MB, Twisk JW, et al. Central fat mass versus peripheral fat and lean mass: opposite (adverse versus favorable) associations with arterial stiffness? the amsterdam growth and health longitudinal study. J Clin Endocrinol Metab. 2004;89(6):2632-9. https://doi.org/10.1210/jc.2003-031619
  37. Snijder MB, Henry RM, Visser M, et al. Regional body composition as a determinant of arterial stiffness in the elderly: The hoorn study. J Hypertens. 2004; 22(12):2339-47. https://doi.org/10.1097/00004872-200412000-00016
  38. Dominguez LJ, Barbagallo M. The cardiometabolic syndrome and sarcopenic obesity in older persons. J Cardiometab Syndr. 2007;2(3):183-9. https://doi.org/10.1111/j.1559-4564.2007.06673.x
  39. Goswami B, Reang T, Sarkar S, et al. Role of body visceral fat in hypertension and dyslipidemia among the diabetic and nondiabetic ethnic population of Tripura-A comparative study. J Family Med Prim Care. 2020;9(6):2885-90. https://doi.org/10.4103/jfmpc.jfmpc_187_20
  40. Bredella MA. Sex differences in body composition. Sex and gender factors affecting metabolic homeostasis. Diabet Obes. 2017:9-27.