Large-scale SQP Methods for Optimal Control of steady Incompressible Navier-Stokes Flows

Navier-Stokes 유체의 최적제어를 위한 SQP 기법의 개발

  • Published : 2002.12.01

Abstract

The focus of this work is on the development of large-scale numerical optimization methods for optimal control of steady incompressible Navier-Stokes flows. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. We develop reduced Hessian sequential quadratic programming. Both quasi-Newton and Newton variants are developed and compared to the approach of eliminating the flow equations and variables, which is effectively the generalized reduced gradient method. Optimal control problems we solved for two-dimensional flow around a cylinder. The examples demonstrate at least an order-of-magnitude reduction in time taken, allowing the optimal solution of flow control problems in as little as half an hour on a desktop workstation.

본 연구의 목적은 Navier-Stokes 유체와 같은 대용량 문제를 위한 최적화 기법의 개발에 있다. 이를 위해 본 연구에서는 reduced Hessian sequential quadratic programming을 개발하였다. 첫째, 유체의 해석을 위한 평형 방정식을 최적화 과정에서 제거하여 변수를 줄였고, 또한 평형방정식과 최적화 과정에서 연속기법을 사용하여 최적해를 보장하면서 더욱 해에 쉽게 접근하도록 하였다. 그리고 각 단계에서는 테일러 시리즈를 이용한 근사치를 이용하여 각 단계에서 대단히 좋은 초기치 값을 제공하여 최적해에 더욱 빠르게 접근하게 하고 아울러 유체의 평형방정식을 풀 때에도 해에 더욱 빠르고 쉽게 접근하도록 하였다. 이 기법을 항력을 줄이기 위한 유체의 최적 제어를 위한 문제에 적용하였다. 유체의 흐름을 제어하기 위하여 물체의 경계면에서 유체의 흡입(suction)과 방축(injection)이라는 기법을 사용하여 경계면에서 속도를 제어하였고, 목적함수로써 항력을 표현하기 위하여 에너지 소실의 변화율을 사용하였다. 예제를 통해 본 연구에서 개발한 최적화 기법의 효용성을 입증하였다.

Keywords

References

  1. Prandtl, L. and Tietjens, O. G., 'Applied Hydro-and Aeromechanics', Dover, New York, 1934, p.81
  2. Gad-el-Hak, M., 'Flow control”, Appl. Mech. Rev. Vol. 42, No. 261, 1989
  3. Moin, P. and Bewley, T., 'Feedback control of turbulence', Appl. Mech. Rev. Vol. 47, 1994
  4. Gunzburger, M. D., Hou, L. S. and Svobodny, T.P., Optimal control and optimization of viscous, incompressible flows, in Incompressible Computational Fluid Dynamics, edited by M. D. Gunzburger and R. A, Nicolaides, Cambridge Univ. Press, Cambridge, UK, 1993
  5. 박재형, 홍순조, 'Navier-Stokes 유체의 최적 제어', 한국전산구조공학회, 제15권, 제4호, 2002, pp.661-674
  6. Gill, P. E., Murray, W. and Wright, M. H., Practical Optimization, Academic Press, New York, 1981
  7. Khaira, M. S., Miller, G. L. and Sheffler, T. J., 'Nested Dissection : A Survey and Comparison of Various Nested Dissection Algorithms', Tech. Rep. CMU-CS-92-106R. Carnegie Mellon University, 1992
  8. Farthat, C. and Chen, P. S., Tailoring domain decomposition methods for efficient parallel coarse grid solution and for system with many right hand sides, in Domain Decomposition Methods in Science and Engineering, Contemporary Mathematics, American Mathematical Society, Providence, RI, 1994
  9. Kupfer, F. S. and Sachs, E. W., 'A prospective look at SQP methods for semilinear parabolic control problem, in Optimal control of partial Differential Equations', edited by K Hoffman and W. Krabs, Springer-Verlag, Berlin/New York, 1991, p.145
  10. Ringerz, U., 'Optimal Design of Nonlinear Shell structure', Tech. Rep. FFA TN 91-18, The Aeronautical Research Institute of Sweden, 1991
  11. Ringerz, U., 'An algorithm for optimization of nonlinear shell structure', Int. F. Numer. Methods Eng. Vol. 38, No. 299, 1995
  12. Orozoc, C. E. and Ghattas, O., 'Massively parallel aerodynamic shape optimization', Comput. Syst. Eng., 1992
  13. Orozco, C. E. and Ghattas, O., 'Optimal design of systems governed by nonlinear partial differential equation', in Forth AIAA/ USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, AIAA, p.1126, 1992
  14. Biegler, L. T., Nocedal, J. and Schmid, C., 'A reduced Hessian method for largescale constrained optimization', SIAM. J. Optim. Vol. 5, No. 314, 1995
  15. Haftka, R. T., Gurdal, Z. and Kamat, M. P., 'Elements of Structural Optimization', Kluwer Academic, Dordercht/Norwall, MA, 1990
  16. Haug, E. J. and Arora, J. S., Applied Optimal Design, Wiley-Interscience, New York, 1979
  17. Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flow, Academic Press, San Diego, 1989
  18. Hugher, T. J. R., Liu, W. K., and Brooks, A., 'Finite element analysis of incompressible viscous flow by the penalty function formulation', J. Comput. Phys. Vol. 30, No. 1, 1979
  19. Davis, T. A., Users' Guide for the Un- symmetric Pattern Multifrontal Package (UMFPACK), CIS Dept., University of Florida, Gainesville, FL, 1993
  20. Davis, T. A., and Duff, I. S., 'An Unsymmetic Pattern Multifrontal Method for Sparse LU Factorization', Tech. Rep. TR-93-018, CIS Dep., University of Florida, Gainesville, FL, 1993
  21. Gunzburger, M. D., 'Flow Control', IMA Volumes in Mathematics and Its Applications, Vol. 68, Springer-Verlag, Berlin/New York, 1995
  22. Gabay, D., 'Reduced Quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization', Math, Programming Study Vol. 16, No. 18, 1982
  23. Xie, Y., 'Reduced Hessian Algorithms for solving Large-Scale Equality Constrained Optimization Problem', Ph. D. thesis, University of Cololado, Boulder, Department of Computer Science, 1991
  24. Batchelor, G. K., An introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, UK, 1967
  25. Huffman, W. P., Melvin, R. G., Young, D. P., Johson, F. T., Bussoletti, J. E., Bieterman, M. B. and Hilmes, C. L., Practical design and optimization in computation fluid dynamics, in Proceedings of 24th AIAA Fluid Dynamics Conference, Orlando, Florda, 1993
  26. Young, D. P., Huffman, W. P., Melvin, R. G., Bieterman, M. B., Hilmes, C. L. and Jhonson, F. T., 'Inexactness and global convergence in design optimization', in proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, Florida, 1994
  27. Cramer, E. J., Dennis, J. E., Frank, P. D., Lewis, R. M. and Shubin, G. R., 'Problem formulation for multidisciplinary optimization', SIAM J. Optim. Vol. 4, No. 754, 1994