DOI QR코드

DOI QR Code

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration

용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과

  • Lee, Deuk-Yong (Department of Materials Engineering, Daelim College of Technology) ;
  • Kim, Byung-Soo (Dental Material Research Center, We DongMyung Co., Ltd.) ;
  • Jang, Joo-Wung (Dental Material Research Center, We DongMyung Co., Ltd.) ;
  • Lee, Myung-Hyun (Advanced Materials Analysis and Evaluation Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Il-Seok (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Dae-Joon (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology)
  • 이득용 (대림대학 재료정보학과) ;
  • 김병수 ((주)우리동명 치과재료연구소) ;
  • 장주웅 ((주)우리동명 치과재료연구소) ;
  • 이명현 (KICET 신소재분석평가팀) ;
  • 박일석 (KIST 복합기능세라믹센터) ;
  • 김대준 (KIST 복합기능세라믹센터)
  • Published : 2002.01.01

Abstract

Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

용융침투법을 이용 스피넬/지르코니아-유리 복합체를 제조하여 지르코니아 첨가가 복합체의 기계적 특성에 미치는 영향을 조사하였다. 유리 침투시간이 증가할수록 침투깊이는 Washburn식에 의한 포물선 관계로 증가하였으며 유리 침투상수 K는 기공 크기의 함수로 지르코니아 첨가량이 증가할수록 감소하였다. 지르코니아가 20 wt% 첨가되었을 때 스피넬/지르코니아-유리 복합체의 최적의 강도값(308 MPa)이 관찰되었지만 지르코니아 양이 증가함에 따라 유리 침투 상수와 투과율(transmittance)이 감소하였다. 지르코니아 첨가가 스피넬/지르코니아-유리 복합체의 기계적 특성 향상에 미치는 증진 효과는 크지 않은 것으로 관찰되었다.

Keywords

References

  1. W. B. Hillig, 'Melt Infiltration Approach to Ceramic Matrix Composites,' Comm. Am. Ceram. Soc., 71 [2] C96-C9(1988)
  2. W. B. Hillig, 'Ceramic Composites by Infiltration,' Ceram. Eng. Sci. Proc., 6 674-83 (1985)
  3. D.-J. Kim, M.-H. Lee and C.-E. Kim, 'Mechanical Prop-erties of Tape-cast Alumina-glass Dental Composites,' J. Am. Ceram. Soc., 82 [11] 3167-72 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02219.x
  4. W. D. Wolf, L. F.Francis, C.-P. Lin and W. H. Douglas, 'Melt-infiltration Processing and Fracture Toughness of Alumina-glass Dental Composites,' J. Am. Ceram. Soc., 76 [1O] 2691-94 (1993)
  5. H. Hornberger, Strength Microstructure Relationships in a Dental Alumina Glass Composite, Ph.D. Dissertaion, University of Birmingham, 1995
  6. D. Y. Lee, J.-W. Jang, B.-S. Kim, D.-J. Kim and Y.-S. Song, 'Kinetic Study of $La_2O_3-Al_2O_3-SiO_2$ Glass Infiltration into Spinel Preforms(in Kor.),' J. Kor. Crystal Growth and Crys tal Technol., 12 [1] 31-5 (2002)
  7. D. Y. Lee, D.-J. Kim and Y.-S. Song, 'Properties of Glassspinel Composites Prepared by Melt Infiltration,' J. Mater. Sci. Lett., 21 [15] 1223-26 (2002) https://doi.org/10.1023/A:1016528720776
  8. D. Y. Lee, J.-W. Jang, D.-J. Kim, I.-S. Park, J.-K. Lee, M.-H. Lee and B.-Y. Kim, 'Glass-alumina Composites Prepared by Melt-infiltration: I. Effect of Alumina Particle Size,' J. Kor. Ceram. Soc., 38 [9] 799-805 (2001)
  9. D. Y. Lee, J.-W. Jang, M.-H. Lee, J.-K. Lee, D.-J. Kim and I.-S. Park, 'Glass-alumina Composites Prepared by Meltinfiltration: II. Kinetic Studies,' J. Kor. Ceram. Soc., 39 [2] 145-52 (2002) https://doi.org/10.4191/KCERS.2002.39.2.145
  10. E. Ryshkewitch, Oxide Ceramics; pp. 257-60, Academic Press, New York, 1960
  11. H. C. Park, Y. B. Lee, K. D. Oh and F. L. Riley, 'Grain Growth in Sintered $$MgAl_2O_4$$ Spinel,' J. Mater. Sci. Lett., 16 1841-44 (1997) https://doi.org/10.1023/A:1018585105949
  12. C.-J. Ting and H.-Y. Lu, 'Hot-pressing of Magnesium Aluminate Spinel-I. Kinetics and Densification Mechanism,' Acta Mater., 47 [3] 817-30 (1999) https://doi.org/10.1016/S1359-6454(98)00400-5
  13. C.-J. Ting and H.-Y. Lu, 'Hot-pressing of Magnesium Aluminate Spinel-I. Microstructure Development,' Acta Mater., 47 [3] 831-40 (1999) https://doi.org/10.1016/S1359-6454(98)00401-7
  14. A. Granon, P. Goeuriot and F. Thevenot, 'Aluminum Magnesium Oxynitride: A New Transparent Spinel Ceramic,' J. Eur. Ceram. Soc., 15 249-54 (1995) https://doi.org/10.1016/0955-2219(95)93946-Z
  15. V. Montouillout, D. Massiot, A. Douy and J. P. Coutures, 'Characterization of $$MgAl_2O_4$$ Precursor Powders Prepared by Aqueous Route,' J. Am. Ceram. Soc., 82 [12] 3299-304 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02243.x
  16. R. Sarkar, S. K. Das and G. Banenee, 'Effect of Attritor Milling on the Densification of Magnesium Aluminate Spinel,' Ceram. Intl., 25 485-89 (1999) https://doi.org/10.1016/S0272-8842(98)00065-0
  17. D. Y. Lee, B.-Y. Kim and D.-J. Kim, 'Effect of Calcination Temperature on Glass Infiltration Rate of Spinel/Zirconia Preforms,' Intl. Conference on Modern Materials & Techno1ogies(CIMTEC 2002), Florence, Itlay, July 15, 2002
  18. D. Y. Lee, D.-J. Kim and B.-Y. Kim, 'Influence of Alumina Particle Size on Fracture Toughness of (Y,Nb)-TZP/$Al_2O_3$ Composites,' J. Eur. Ceram. Soc., 22 [13] 2172-79 (2002)
  19. D. Y. Lee, J.-W. Jang and D.-J. Kim, 'Raman Spectral Characterization of Existing Phases in the $$ZrO_2-Y_2O_3Nb_2O_5$$System,' Ceram. Intl., 27 [3] 291-98 (2001) https://doi.org/10.1016/S0272-8842(00)00079-1
  20. D. Y. Lee, D.-J. Kim and D.-H. Cho, 'Low-temperature Phase Stability of $Y_2O_3$ and $Nb_2O_5$ Co-doped TZP Ceramics' J. Mater. Sci. Lett., 17 [3] 185-87 (1998) https://doi.org/10.1023/A:1006567808134
  21. Standard Test-method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates, ASTM Designation F 394-78, Annual book of ASTM Standards Vol. 15.02, Secdon 15, 446-50. American Society for Testing and Materials, Philadelphia, PA, 1996
  22. International Standard of Implants for Surgery-ceramic Materials Based on High Purity Alumina, ISO 6474:1994(E), Geneve, Switzerland
  23. P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, 'Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II. Strength Method,' J. Am. Ceram. Soc., 64 [9] 539-43 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  24. D. Y. Lee, D.-J. Kim, M.-H. Lee and J.-W. Jang, 'Flaw Tolerance of (Y,Nb)-TZP/$Al_2O_3$ Composites,' J. Kor. Ceram. Soc., 38 [1] 56-60 (2001)
  25. S. Taruta, K. Kawashima, K. Kitajima, N. Takusagawa, K. Okada and N. Otsuka, 'Influence of Zirconia Addition on the Sintering Behavior of Bimodal Size Distributed Alumina Powder Mixtures(in Jpn.),' J. Ceram. Soc. Jpn., 102 [2] 139-44 (1994) https://doi.org/10.2109/jcersj.102.139
  26. D. P. Hasselman and R. M. Fulrath, 'Proposed Fracture Theory of a Dispersion-strengthened Glass Matrix,' J. Am. Ceram. Soc., 49 [2] 68-72 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb13210.x