DOI QR코드

DOI QR Code

Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element

9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석

  • Published : 2003.03.01

Abstract

In the present paper, formulation of a nine-node assumed strain shell element is modified and extended for analysis of actuator embedded/attached structures. The shell element can alleviate locking and has sic DOFs per node by discarding assumption of no thickness change. In modeling of the physicalquantities, we have assumed linear strain field through the whole thickness direction. The electric and mechanical quantities have been coupled through the constitutive equations. Unlike typical shell element, the present shell element allows thickness change. Thus, three-dimensional piezoelasticity can be accurately simulated. Base on the formulation, a finite element program is generated and the code is validated by solving numerical examples. The results from the present work are well agreed with those from other references.

본 논문에서는 압전 작동기가 삽입되거나 부착된 구조를 해석하기 위하여, 기존의 기계적 문제만을 고려한 9 절점 가정변형률 쉘 요소의 정식화를 전기-기계연성 문제에도 적용 가능하도록 확장하였다. 본 쉘요소는 잠김현상을 완화할 수 있고, 두께변형을 고려하기 위해 각 절점에서 6개의 자유도를 갖는 특징이 있다. 전기-기계 자유도들은 구성방정식을 이용하여 연계시켰다. 변위장은 요소의 전체 두께방향으로 선형으로 가정하였고, 전기적 포텐셜은 각각의 압전재료층에 대해 선형으로 가정하였다. 확장된 정식화에 기초한 유한요소 프로그램을 개발하였고, 수치예제들을 통해 프로그램을 검증하였다. 개발된 쉘 요소에 의한 결과는 다른 참고문헌들의 결과들과 잘 일치하였다.

Keywords

References

  1. H. Allik and T.J.R. Hughes, "Finite Element Method for Piezoelectric Vibration," International Journal for Numerical Method in Engineering, Vol. 2, pp. 151-157, 1970. https://doi.org/10.1002/nme.1620020202
  2. A. Benjeddou, "Advances in piezoilectric finite element modeling of adaptive structural element : a survey," Computes and Structures, Vol. 76, pp . 347-363, 2000. https://doi.org/10.1016/S0045-7949(99)00151-0
  3. 조병찬, 이상기, 박훈철, 윤광준, 구남서, "3차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석", 한국한공우주학회지, 제30권, 제2호, 2002, pp. 67-74.
  4. D.A. Saravanos, "Mixed laminate theory and finite element for smart piezoelectric composite shell structures," AIAA Journal, Vol. 35, No. 8, pp. 1327-1333, 1997. https://doi.org/10.2514/2.264
  5. H.C. Park, C.M. Cho, S.W. Lee, "An Efficient Assumed Strain Element Model with Six DOF per Node for Geometrically Non-linear Shell," International Journal of Numerical Method in Engineering, Vol. 38, pp . 4101-4122, 1995. https://doi.org/10.1002/nme.1620382403
  6. O.C. Zienkiewicz, R.L. Taylor, The finite element method-fourth edition, McGRAW Hill, 1989.
  7. H.C. Park, S. Lee, B.C. Cho, K.J. Yoon, N.S. Goo, "Analysis of multi-layeredactuators using an assumed strain solid element," Materials Chemistry and Physics, Vol. 75, pp. 174-177, 2002. https://doi.org/10.1016/S0254-0584(02)00050-0
  8. K.Y. Sze and L.Q. Yao, "Modelling Smart Structures with segmented Piezoelectric sensors and actuators," J. of Sound and Vibration, Vol. 235, No.3, pp . 495-520, 2000. https://doi.org/10.1006/jsvi.2000.2944
  9. H.S. Tzou, Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, 1993.
  10. H. Kioua and S. Mirza, "Piezoelectric induced bending and twisting of laminated composite shallow shells", Smart Materials and Structures, Vol. 9, pp . 476-484, 2000. https://doi.org/10.1088/0964-1726/9/4/310