DOI QR코드

DOI QR Code

Application of Combustion Stabilization Devices to Liquid Rocket Engine

액체 로켓엔진에서 연소 안정화기구의 적용 효과

  • Published : 2003.08.01

Abstract

Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with/without these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the peculiar stability characteristics depending on the operating condition and it is found to have small dynamic stability margin. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect.

로켓엔진에서 발생하는 고주파 연소 불안정(음향 불안정)을 억제하기 위해 엔진에 적용되는, 배플이나 음향공과 같은 연소 안정화기구를 설계하고 그 효과를 시험을 통해 검증하였다. 먼저, 음향 감쇠 관점에서, 선형 감쇠이론을 토대로 연소 안정화기구를 설계하였으며, 주요 설계인자로서 감쇠인자를 고려하여 여러 연소실에서의 감쇠인자를 수치적으로 계산하였따. 다음으로, 다양한 작동조건에서, 음향공이 장착된 무배플 연소실에서의 연소시험이 수행되었다. 이를 통해 무배플 연소실의 안정성 특성, 주요 유해주파수 및 유해 음향모드 등이 파악되었으며, 동적 안정성 여분이 상당히 작음이 확인되었다. 이는, 무배플 연소실의 연소 안정화에 현재 사양의 음향공의 효과가 미흡함을 입증한다. 배플의 효과를 입증하기 위해 배플장착 연소실에서 연소 안정성 평가시험을 수행하였고, 뚜렷한 연소 안정화 현상을 관측할 수 있었다. 이는 현 설계사양의 배플이 충분한 감쇠 효과를 가짐을 입증한다.

Keywords

References

  1. Huzel, D. K. and Huang, D. H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1992.
  2. Harrje, D. J. and Reardon, F. H. (Eds.), Liquid Propellant Rocket Instability, NASA SP-194, 1972.
  3. Sutton, G. P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons, Inc., New York, 1992.
  4. Culick, F. E. C. and Yang, V., "Overview of Combustion Instavilities in Liquid Propellant Rocket Engine," in Liquid Rocket Engine Combustion Instability (V. Yang and W. E. Anderson, Eds.), Vol. 169, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1995, pp. 3-38.
  5. Zucrow, M. J. and Hoffman, J. D, Gas Dynamics, Vol. II, John Wiley & Sons, Inc., New York, 1977.
  6. 손채훈, "베플이 장착된 로켓엔진 연소기의 음향장 해석", 대한기계학회논문집 B, 제26권, 제7호, 2002.
  7. Liquid Rocket Engine Combustion Stabilization Devices, NASA SP-8113, 1974.
  8. Laudien, E., Pongratz, R., Pierro, R., and Preclik, D., "Experimental Procedures Aiding the Design of Acoustic Cavities," in Liquid Rocket Engine Combustion Instability (V. Yang and W. E. Anderson, Eds.), Vol. 169, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1995, pp. 377-399.
  9. 조남경, 한국항공우주연구원 Design Note 추정-01-001, 2001.
  10. 손채훈, 김영목, "음향공이 장착된 로켓엔진 연소실의 음향장 해석", 한국항공우주학회지, 제30권, 제4호, 2002, pp. 28-37. https://doi.org/10.5139/JKSAS.2002.30.4.028
  11. 하성업, 손채훈, 설우석, 한국항공우주연구원 Test Note 엔진-01-09, 2001.
  12. 김승한 외 6인, "KARI 연소시험설비(RETF)에서의 액체로켓엔진 성능시험", 제3회 우주발사체 심포지움, 2002년 3월, pp. 25-30.
  13. Agarkov, A. F. et al., "Injector Flame Stabilization Effects on Combustion Instability," in Liquid Rocket Engine Combustion Instability (V. Yang and W. E. Anderson, Eds.), Vol. 169, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1995, pp. 281-305.
  14. Oberg, C. L., "Combustion Stabilization with Acoustic Cavities," Journal of Spacecraft and Rockets, Vol. 8, No. 12, 1971, pp. 1220-1225. https://doi.org/10.2514/3.30366
  15. Pressure Fed Thrust Chamber Technology Program, NASA-CR-190666, 1992.
  16. 손채훈, 김성구, 문윤환, 김영목, 위성발사체 로켓엔진의 연소 불안정 억제/방지 기술, 한국항공우주연구원, 2003.

Cited by

  1. Geometric and number effect on damping capacity of Helmholtz resonators in a model chamber vol.329, pp.16, 2010, https://doi.org/10.1016/j.jsv.2010.02.018
  2. Nonlinear acoustic damping induced by a half-wave resonator in an acoustic chamber vol.14, pp.6, 2010, https://doi.org/10.1016/j.ast.2010.04.011
  3. Hot-fire injector test for determination of combustion stability boundaries using model chamber vol.19, pp.9, 2005, https://doi.org/10.1007/BF02984194
  4. Combustion Stability Boundaries of the Subscale Rocket Chamber with Impinging Jet Injectors vol.23, pp.1, 2007, https://doi.org/10.2514/1.19937
  5. On the method for hot-fire modeling of high-frequency combustion instability in liquid rocket engines vol.18, pp.6, 2004, https://doi.org/10.1007/BF02990873
  6. Combustion stability characteristics of the model chamber with various configurations of triplet impinging-jet injectors vol.20, pp.6, 2006, https://doi.org/10.1007/BF02915950
  7. Stability rating tests for the length-optimization of baffles in a liquid propellant combustion chamber using a pulse gun vol.12, pp.3, 2008, https://doi.org/10.1016/j.ast.2007.06.003
  8. Acoustic damping enhanced by gaps in baffled injectors in an acoustic chamber vol.330, pp.12, 2011, https://doi.org/10.1016/j.jsv.2010.12.028