DOI QR코드

DOI QR Code

Analysis of Serum proteom before and after Intravenous Injection of wild ginseng herbal acupuncture

자연산 산삼 증류약침의 혈맥주입 전.후 혈장의 Proteom 분석

  • Kang, Tae-Sik (Department of Acupuncture and Moxibustion, Oriental Medical College, SangJi University) ;
  • Lee, Sun-Gu (Department of Pathology, Oriental Medical College, SangJi University) ;
  • Kwon, Ki-Rok (Department of Acupuncture and Moxibustion, Oriental Medical College, SangJi University)
  • 강태식 (상지대학교 한의과대학 침구학교실) ;
  • 이선구 (상지대학교 한의과대학 병리학교실) ;
  • 권기록 (상지대학교 한의과대학 침구학교실)
  • Published : 2004.12.30

Abstract

Objectives : To observe changes in the serum proteins before and after intravenous injection of wild ginseng herbal acupuncture. Methods : Blood was collected before and after the administration of wild ginseng herbal acupuncture and only the serum was centrifuged. Then differences in the spots on the scanned image after running 2-Dimensionl electrophoresis were located and conducted mass analysis and protein identification. Results : Following results were obtained from the comparative analysis of serum proteins before and after the administration of wild ginseng herbal acupuncture. 1. 28 spots were identified before and after the administration. 2. In confirming manifestation degree, spots with more than two-times increase were 204, 803, 1505, 2205, 3105, 7104, 9001 spots, with more than one-time increase were 1101, 1302, 2013, 3009, 3010, 4002, 4009, 6706, 7103, 8006, 8101, and spots with decrease were 205, 801, 3205, 5202, 6105. 3. After conducting protein identification, proteins 205, 804, 1302, 4009, 6105, 6106 are unidentified yet, and 1101 is unnamed protein. Protein 204 is identified as complement receptor CR2-C3d, 801 as YAP1 protein, 803 as antitrypsin polymer, 1505 as PRO0684, 2013 and 3010 as proapolipoprotein, 2205 as USP48, 2403 as vitamin D binding protein, 3009 as complement component 4A preprotein, 3105 as immunoglobulin lambda chain, 3205 as transthyretin, 4002 as Ras-related protein Ral-A, 4204 as beta actin, 5202 and 7104 as apolipoprotein L1, 6704 as alpha 2 macroglobulin precursor, 7103 as complement component 3 precursor, 8006 as testis-specific protein Y, 8101 as Transferrin, 9001 as(Alpha-Oxy, Beta-(C112g)deoxy) T-State Human Hemoglobin, and 9003 as human hemoglobin. 4. Immune protein CR2-C3d, which acts against microbes and pathogenic organisms, and Antitrypsin(803), which is secreted with inflammatory response in the lungs, were increased by more than 200% after the administration of herbal acupuncture. 5. Immunoglobulin lambda chain(3105), Alpha-Oxy, Beta-(C112g)deoxy T-State Human Hemoglobin(9001), and human hemoglobin(9003) were increased by more than two-times after the administration of herbal acupuncture. 6. Proapolipoprotein(2013, 3010) and apolipoprotein(7104), key components of the HDL-cholesterol which plays an important role in preventing arteriosclerosis, were increased after the administration of herbal acupuncture. 7. Vitamin D binding protein(DBP, 2403), protecting the lung at the time of inflammatory response, was increased after the administration of herbal acupuncture. 8. Transthyretin(TTR, 3205), which is the main protein causing familial aimyloid polyneuropathy(FAP), was decreased after the administration of herbal acupuncture. 9. Ras-related protein Ral-A(4002) that controls phospholipid metabolism, cytoskeletal formation, and membrane traffic, was increased after the administration of herbal acupuncture. 10. Testis-specific protein Y(8006), which takes part in determination of the gender, was increased by more than two-times after the administration of herbal acupuncture. 11. Transferrin(8101), T-State Human Hemoblobin(9001), and Human Hemoblobin(9003) which balances the iron level in the body, were increased after the administration of herbal acupuncture. Conousion : Above results support the notion that intravenous injection of cultivated wild ginseng herbal acupuncture induce changes in serum proteins and this research can be a pioneer work in finding biomarkers.

Keywords

References

  1. 신순식, 외. 산삼 감정 기준의 객관성. 한의학연구소 동의 한의연 제 5집, 107-114. 2001.12.
  2. 전국한의과대학 본초학교수공편저. 본초학. 서울, 영림사, 531,1994.
  3. 중약대사전편찬위원회. 완역중약대사전 권7. 서울, 정담, 3473-3479, 1997.
  4. 대한약침학회. 약침요법 시술 지침서, 대한약침학회, 서울, 13-14, 112-118, 138-203, 1999.
  5. 姜風, 外. 蔘麥注射液 配合 西藥抱救急性 心筋梗塞 合病 心源性休克 23例. 中國中西醫結合雜誌 19卷 7期, 433, 434,1999.
  6. 張方元, 外, 癌症疼痛的中醫藥治療槪況. 中國中西醫結合雜誌 19卷 8期, 503-505, 1999.
  7. 王燕燕. 加用生脈注射液治療急性心筋梗塞的治療效果觀察. 中國中西醫結合雜誌 19卷 10期, 631, 632, 1999.
  8. 하대유. 인삼에 대한 세포학 및 면역학적 연구. 대한 면역학회지 Vol. 1,No. 1,45-52, 1979.
  9. 山田昌之. 朝鮮人蔘의 硏究. 日本藥理學會誌 51 : 390, 1955.
  10. Brekhman, I.I, Panax ginseng, Gosudarst Isdat et Med, Lit. Leningard, 1, 1957.
  11. Garriques S. Panax Quinquefolia. Am Chem Pharm 90: 331,1954.
  12. 최진호, 인삼의 신비, 서울, 교문사, 13, 14, 1984.
  13. Takagi, K, Proceedings International Ginseng Symposium, The Central Research Institute, Office of Monopoly, Seoul, Korea,119, 1974.
  14. 이산명 외, 인삼, 녹용 및 목향 수침이 흰쥐의 체중 및 소화관 호르몬 분비에 미치는 영향. 대한침구학회지, Vol. 5,No.1, 1-5, 1988.
  15. 김웅시 외, 수삼, 백삼 및 홍삼수침이 Alloxan 당뇨병 흰쥐에 미치는 영향. 대한 침구학회지, Vol. 6,No.1, 1-5, 1989.
  16. 남윤석, 약침용 홍삼추출액의 안전성 연구. 경희대학교 대학원, 1996.
  17. 강성길 외, 인삼수침이 진통 및 혈압에 미치는 영향. 동양의학학회지, Vol. 11, No.2, 66-75, 1985.
  18. 김태윤 외, 인삼수침전처리가 발암예방에 미치는 영향. 대한한의학회지, Vol. 4, No.2, 150-157, 1988.
  19. 황경애 외, 인삼 및 녹용수침의 시간경과에 따른 면역효과연구. 경희의학, Vol. 4, No.2, 150-157, 1988.
  20. 이혜정 외, 강혈당작용에 의거한 종류별 인삼수침엑기스 제법연구. 대한한의학회지, Vol. 13,No.1, 23-40, 1992.
  21. 김용석 외, 인삼수침이 흰쥐의 갑상선 기능저하에 미치는 영향. 경희의학, Vol. 6, No.2, 202-210, 1990.
  22. 임하변 외, 인삼수침이 항 알레르기에 미치는 영향. 경희의학, Vol. 7, No.1, 63-72, 1991.
  23. 김창일 외, 농도별 인삼수침이 hydrocortisone acetate를 투여한 흰쥐의 체내대사에 미치는 영향. 대한한의학회지, Vol. 9,No. 2, 33-44,1988.
  24. 권기록 외, 정맥주입용 산양산삼 증류약침의 급성. 아급성 독성 실험 및 Sarcoma-180 항암 효과에 관한 실험적 연구. 대한약침학회지, Vol. 6, No.2, 7-27,2003. https://doi.org/10.3831/KPI.2003.6.2.007
  25. 권기록. 정맥주입용 산삼약침이 인체에 미치는 영향에 관한 임상적 연구. 대한약침학회지, Vol. 7, No. 1, 15-26, 2004.
  26. 곡경승 외, pH 및 전해질 조절 산양산삼 증류약침의 Apoptosis에 관한 실험적 연구. 대한침구학회지 21권 6호, 1-15, 2004.
  27. 조희철 외, 농도별 산양산삼 증류약침의 Apoptosis에 관한 실험적 연구. 대한약침학회지, Vol. 7,No. 2, 5-15, 2004. https://doi.org/10.3831/KPI.2004.7.2.005
  28. Bradford MM., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 7, 248-254, 1976.
  29. Oakley BR, Kirsch DR, Morris NR. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1, 361-363, 1980. https://doi.org/10.1016/0003-2697(80)90470-4
  30. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1,850-858,1996.
  31. 우선희 외, 프로테옴 해석에 의한 벼 게놈 기능해석과 응용. 한국식물생명공학회지, 30권 30호, 281-283, 2003. https://doi.org/10.5010/JPB.2003.30.3.281
  32. Fearon DT, Carter RH.. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol. 13,127, 149, 1995. https://doi.org/10.1146/annurev.iy.13.040195.001015
  33. Janeway CAJ, Medzhitov R.. Innate immunity: The virtues of a nonclonal system of recognition. Cell 91, 295, 298, 1997. https://doi.org/10.1016/S0092-8674(00)80412-2
  34. Carroll MC, Fischer MB., Complement and the immune response. Curr Opin Immunol. 9,64,69,1997. https://doi.org/10.1016/S0952-7915(97)80160-4
  35. Muller-Eberhard H.J., Molecular organization and function of the complement system. Annu Rev Biochem. 57,321,347,1988. https://doi.org/10.1146/annurev.bi.57.070188.001541
  36. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT., EpsteinBarr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 81, 4510, 4514,1984. https://doi.org/10.1073/pnas.81.14.4510
  37. Tanner J, Weis J, Fearon D, Whang Y, Kieff E., EpsteinBarr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50,203, 213,1987. https://doi.org/10.1016/0092-8674(87)90216-9
  38. Delcayre AX, Salas F, Mathur S, Kovats K, Lotz M, Lernhardt W., EpsteinBarr virus/complement C3d receptor is an interferon alpha receptor. EMBO J. 10, 919,926, 1991.
  39. Aubry JP, Pochon S, Graber P, Jansen KU, Bonnefoy JY., CD21 is a ligand for CD23 and regulates IgE production. Nature 358, 505, 507,1992. https://doi.org/10.1038/358505a0
  40. Song Z, Moser C, Wu H, Faber V, Kharazmi A, Hoiby N., Cytokine modulating effect of ginseng treatment in a mouse model of Pseudomonas aeruginosa lung infection. J Cyst Fibros. 2,112-119, 2003. https://doi.org/10.1016/S1569-1993(03)00065-1
  41. Liou CJ, Li ML, Tseng J., Intraperitoneal injection of ginseng extract enhances both immunoglobulin and cytokine production in mice. Am J Chin Med. 32, 75-88, 2004. https://doi.org/10.1142/S0192415X04001771
  42. Kuge S, Jones N, Nomoto A., Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16,1710-1720, 1997. https://doi.org/10.1093/emboj/16.7.1710
  43. Rao A, Luo C, Hogan PG., Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 15,707-747,1997. https://doi.org/10.1146/annurev.immunol.15.1.707
  44. Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR., L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature. 401, 703-708,1999. https://doi.org/10.1038/44378
  45. de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW., Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature. 392, 182-186, 1998. https://doi.org/10.1038/32419
  46. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN., A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93,215-228, 1998. https://doi.org/10.1016/S0092-8674(00)81573-1
  47. Shaw KT, Ho AM, Raghavan A, Kim J, Jain J, Park J, Sharma S, Rao A, Hogan PG., Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci U S A. 92, 11205-11209, 1995. https://doi.org/10.1073/pnas.92.24.11205
  48. Beals CR, Clipstone NA, Ho SN, Crabtree GR., Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 11,824-834,1997. https://doi.org/10.1101/gad.11.7.824
  49. Jain J, McCaffrey PG, Valge-Archer VE, Rao A., Nuclear factor of activated T cells contains Fos and Jun. Nature. 356, 801-804,1992. https://doi.org/10.1038/356801a0
  50. Brantly M, Nukiwa T, Crystal RG., Molecular basis of alpha-1-antitrypsin deficiency. Am. J. Med. 84, 1331, 1988.
  51. Abrams WR, Fein AM, Kucich U, Kueppers F, Yamada H, Kuzmowycz T, Morgan L, Lippmann M, Goldberg SK, Weinbaum G., Proteinase inhibitory function in inflammatory lung disease: I. Acute bacterial pneumonia. Am Rev Respir Dis. 129, 735, 741,1984.
  52. Braun J, Dalhoff K, Schaaf B, Wood WG, Wiessmann KJ., Characterization of protein-antiproteinase imbalance in bronchoalveolar lavage from patients with pneumonia. Eur Respir J. 7,127,133,1994. https://doi.org/10.1183/09031936.94.07010127
  53. Levine RL, Moskovitz J, Stadtman ER., Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50,301,307,2000. https://doi.org/10.1080/15216540051081056
  54. Taggart C, Cervantes-Laurean D, Kim G, McElvaney NG, Wehr N, Moss J, Levine RL., Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J. Biol. Chem. 275, 27258, 27265, 2000. https://doi.org/10.1074/jbc.M004850200
  55. VanWetering S, MannesseLazeroms SPG, VanSterkenburg M, Daha MR, Dijkman JH, Hiemstra PS., Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 16, L888, L896, 1997.
  56. Sivasothy P, Daffron TR, Hiemstra PS, Lomas DA., The interaction of M, S, Z, latent and cleaved plasma alpha-1-antitrypsin with human neutrophil defensin-1. Thorax 54, P249, 1999.
  57. Eisenberg S., High density lipoprotein metabolism. J Lipid Res. 25, 1017,1058, 1984.
  58. Tall AR., Plasma high density lipoproteins: metabolism and relationship to atherogenesis. J Clin Invest 86, 379, 384, 1990. https://doi.org/10.1172/JCI114722
  59. Paszty C, Maeda N, Verstuyft J, Rubin EM., Apolipoprotein A-I transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 94, 899, 903, 1994. https://doi.org/10.1172/JCI117412
  60. Liu AC, Lawn RM, Verstuyft JG, Rubin EM., Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein (a) in transgenic mice. J Lipid Res. 35, 2263,2267,1994.
  61. Shah PK, Nilsson J, Kaul S, Fishbein MC, Ageland H, Hamsten A, Johansson J, Karpe F, Cercek B., Effects of recombinant apolipoprotein A-I Milano on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation. 97,780, 785, 1998. https://doi.org/10.1161/01.CIR.97.8.780
  62. Cooke NE, Haddad JG., Vitamin D binding protein (Gc-globulin). Endocr. Rev. 10, 294,307, 1989. https://doi.org/10.1210/edrv-10-3-294
  63. Hirschfeld J., Immune-electrophoretic demonstration of qualitative differences in human sera and their relation to the haptoglobins. Acta Pathol. Microbiol. Scand. 47, 160, 168, 1959. https://doi.org/10.1111/j.1699-0463.1959.tb04844.x
  64. McLeod JF, Cooke NE., The vitamin D-binding protein, -fetoprotein, albumin multigene family: detection of transcripts in multiple tissues. J. Biol. Chem. 264, 217, 602,1769,1989.
  65. Van Baelen H, Bouillon R, De Moor P., Vitamin D-binding protein (Gc-globulin) binds actin. J. Biol. Chem. 255, 2270,2272, 1980.
  66. Lee WM, Galbraith RM., The extracellular actin-scavenger system and actin toxicity. New Engl. J. Med. 326,1335,1341,1992. https://doi.org/10.1056/NEJM199205143262006
  67. Yamamoto N, Homma S, Haddad JG, Kowalski MA., Vitamin D3 binding protein required for in vitro activation of macrophages after alkylglycerol treatment of mouse peritoneal cells. Immunology. 74, 420, 424, 1991.
  68. Piquette CA, Robinson-Hill R, Webster RO., Human monocyte chemotaxis to complement-derived chemotaxins is enhanced by Gc-globulin. J. Leukocyte Biol. 55,349, 354, 1994.
  69. Kew RR, Webster RO., Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J. Clin. Invest. 82, 364, 369, 1988. https://doi.org/10.1172/JCI113596
  70. Metcalf JP, Thompson AB, Gossman GL, Nelson KJ, Koyama S, Rennard SI, Robbins RA., Gc-globulin functions as a cochemotaxin in the lower respiratory tract. A potential mechanism for lung neutrophil recruitment in cigarette smokers. Am Rev Respir Dis. 143, 844,849, 1991.
  71. Costa PP, Figueira AS, Bravo FR., Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci. USA. 75, 4499, 4503, 1978. https://doi.org/10.1073/pnas.75.9.4499
  72. Dickson PW, Aldred AR, Marley PD, Tu GF, Howlett GJ, Schreiber G., High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem Biophys Res Commun. 127, 890, 895, 1985. https://doi.org/10.1016/S0006-291X(85)80027-9
  73. Bos JL., Ras-like GTPases. Biochim Biophys Acta. 1333,M19-M31,1997.
  74. Urano T, Emkey R, Feig LA., Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816,1996.
  75. White MA, Vale T, Camonis JH, Schaefer E, Wigler MH., A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271,16439-16442,1996. https://doi.org/10.1074/jbc.271.28.16439
  76. Herrmann C, Horn G, Spaargaren M, Wittinghofer A., Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794-6800,1996 https://doi.org/10.1074/jbc.271.12.6794
  77. Jiang H, Luo JQ, Urano T, Frankel P, Lu Z, Foster DA, Feig LA., Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378, 409-412,1995 https://doi.org/10.1038/378409a0
  78. Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A., Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84,723-734,1996. https://doi.org/10.1016/S0092-8674(00)81050-8
  79. Bielinski DF, Pyun HY, Linko-Stentz K, Macara IG, Fine RE., Ral and Rab3a are major GTP-binding proteins of axonal rapid transport and synaptic vesicles and do not redistribute following depolarization stimulated synaptosomal exocytosis. Biochim. Biophys. Acta 1151, 246-256,1993. https://doi.org/10.1016/0005-2736(93)90109-D
  80. Volknandt W, Pevsner J, Elferink LA, Scheller RH., Association of three small GTP-binding proteins with cholinergic synaptic vesicles. FEBS Lett. 317, 53-56, 1993. https://doi.org/10.1016/0014-5793(93)81490-Q
  81. Dubin RA, Ostrer H., Sry is a transcriptional activator. Mol Endocrinol. 8, 1182-1192, 1994. https://doi.org/10.1210/me.8.9.1182
  82. Beutler E, Hoffbrand AV, Cook JD., Iron deficiency and overload. Hematology (Am Soc Hematol Educ Program). 40-61, 2003.
  83. Brugnara C., Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem. 49, 1573-1578, 2003. https://doi.org/10.1373/49.10.1573

Cited by

  1. The Effects of distilled Wild Ginseng Herbal Acupuncture on the Heart Rate Variability(HRV) vol.11, pp.1, 2008, https://doi.org/10.3831/KPI.2008.11.1.055
  2. A 4-Week, Repeated, Intravenous Dose, Toxicity Test of Mountain Ginseng Pharmacopuncture in Sprague-Dawley Rats vol.17, pp.4, 2014, https://doi.org/10.3831/KPI.2014.17.034