Preparation of Active Fraction from Radish Water Extracts for Improving the Intestinal Functions and Constipation Activities

무(Raphanuse sativa var. nigra L.) 물 추출물로 부터 장기능 및 변비질환 개선을 위한 활성 분획의 제조

  • Published : 2004.09.30

Abstract

The aim of this study was to develop an activator, 3-10 kDa fraction from radish water extracts, that will improve the intestinal function and bowel movement in the colons. Radish water extracts were investigated for their intestinal function effects according to the charcoal meal transit method, employing Balb/c mice: also, their anti-constipation activities were compared utilizing the loperamide-induced constipation method, employing SD rats. The result suggested that the effects of the charcoal meal transit increased remarkably in radish water extract administrated rats in comparison to loperamide administrated rats. Futhermore, the effects of various solvent extracts of radish on charcoal meal transit in Balb/c mice increased remarkably in radish water fraction administrated rats than in different solvent fraction administrated rats. Radish extraction was tested and isolated into 4 groups: below 3 kDa, 3-10 kDa, 10-300 kDa, and over 300 kDa. 3-10 kDa was the most effective on the intestinal function and bowel movement in the colons; also, 3-10 kDa fraction of radish water extraction was found to be the most effective charcoal meal transit. The dry weight and moisture content of feces remarkedly increased in the 3-10 kDa administrated rats group than in the loperamide only group. Experimental results revealed that 3-10 kDa fraction of radish water extract was the most effective on the intestinal function and bowel movement was the crypt epithelial cells that contained more MUC2 in the 3-10 kDa administrated group than the loperamide only group: in addition, the thickness of mucus layer stained with alcian blue was significantly thicker in 3-10 kDa administrated rats than in loperamide administrated rats. Crypt epithelial cells secreted more MUC2 in the 3-10 kDa administrated group than the loperamide only group and the stained cells clearly showed the MUC2 with antibody Biogenex AM358.

본 연구는 장기능 개선 및 변비 질환의 예방 및 치료에 효과적인 천연 식품인 무(Raphanuse sativa var. nigra L.)로부터 추출, 정제된 조성물, 보다 상세하게는 무의 물 추출물에서 정제 분획된 분자량 3-10 kDa가 주성분으로 장기능 및 변비 질환의 개선 효과를 가지는 조성물에 관한 것이다. 무의 물 추출물을 Balb/c mice를 이용한 활성탄 식이의 장 이동 효과와 SD rats를 이용한 loperamide-induced constipation method에 의한 항변비 효과를 검색하였다. 또한 항변비 효과 검색을 종료한 후, 희생한 횐쥐의 대장관 내 점액질 분비 효과를 조사하였다. 특히, 대장에 많이 존재하는 MUC2 분비 효과를 알아보고자 하였다. 무의 물 추출물은 식수만 투여한 대조군에 비해 용량에 비례해서 활성탄 식이의 장 이동 효과가 현저하게 증가되었고, 다양한 용매 분획에서는 무의 물 분획이 가장 큰 장 이동 효과를 나타내어, 물 분획이 장 이동을 촉진시키는 활성 물질이 가장 많이 함유된 분획으로 확인할 수 있었다. 또한 물 분획을 분자량 크기로 3 kDa 이하, 3-10 kDa, 10-300 kDa, 300 kDa 이상의 4가지 세 분획으로 나누어 활성탄 식이의 장이동 효과를 조사한 결과, 이들 세 분획중에서 3-10 kDa의 분자량을 가진 분획이 주요 구성 물질로 장 이동 촉진 효과를 보였다. Loperamide를 이용해 3-10 kDa의 변비해소 작용을 알아 본 결과에서도 무 물세분획(3-10 kDa) 투여로 변비 유발기간 내내 변량이 증가되었으며, 변비 유발군에 비해, 사료 섭취량의 증가는 변비 유발 물질인 loperamide를 계속 섭취함에도 불구하고 변비가 해소되고 있음을 확인할 수 있었다. 무 물세분획(3-10 kDa)의 대장관내 점액질의 분비에 미치는 영향을 조사한 결과에서도, 대장관 내 변의 개수가 정상군과 거의 같은 수준의 변 개수가 관찰되어 배변촉진 효과가 확인 되었고, 항체(Biogenex AM358)를 사용하여 면역조직 화학법으로 MUC2 관찰시, 변비 유발군에서는 MUC2로 염색된 세포가 현저하계 감소되나, 무 물세분획(3-l0 kDa) 투여시 뚜렷하게 MUC2 염색이 증가되었다.

Keywords

References

  1. Yim, H. B., Lee, G. and Chae, H. J. (2004) Cytotoxicity of ethanol extract of Raphanuse sativus on human lung cacer cell lines. .f. Korean Soc. Food Sci. Nutr. 33, 287-290 https://doi.org/10.3746/jkfn.2004.33.2.287
  2. Shimotoyodome, A., Meguro, S., Hase, T, Tokimitsu, 1. and Sakata, T (2001) Sulfated polysaccharides, but not cellulose, increase colonic mucus in rats with loperamide-induced constipation. Digest. Dis. Sci. 46, 1482-1489 https://doi.org/10.1023/A:1010644021888
  3. Matsuoka, H., Toda, Y, Yoneyama, K and Uda, Y (1998) FOimation of raphanusanius depends on extraction procedure and solvent. Phytochemistry 47, 957-977
  4. Monde, K, Takasugi, M. and Shirata, A. (1995) Three sulphurcontaining stress metabolites from Japanese radish. Phytochemistry 39, 581-586 https://doi.org/10.1016/0031-9422(95)00011-U
  5. Muller-Lissner, S. A. (1999) Classification, pharmacology, and side effects of common laxatives. Ital. J. Gastroenterol. Hepatol. 31, 234-237
  6. Corazziari, E. (1999) Need of the drug for the treatment of chronic constipation. Ital. .f. Gastroenterol. Hepatol. 31, 232233
  7. Corfield, A. P, Carroll, D., Myerscouh, N. and Probert, C. S. J. (2001) Mucins in the gastrointestinal tract in health and disease. Front Biosci. 6, 1321-1327 https://doi.org/10.2741/Corfield
  8. Coupar, 1. M. (1987) Opioid action on the intestine: the importance of the intestinal mucosa. Life Sci. 41, 917-925 https://doi.org/10.1016/0024-3205(87)90677-1
  9. Kirjavainen, P Y., Ouwehand, A. c., Isolauri, E. and Salminen, S. J. (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167, 185-189 https://doi.org/10.1111/j.1574-6968.1998.tb13226.x
  10. 0uwehand, A. C. and Kirjavainen, PY. (1999) Adhension of probiotic microorganisms to intestinal mucus. Int. Diary J. 9, 623-630 https://doi.org/10.1016/S0958-6946(99)00132-6
  11. Montagne, L., Pluske, 1. R. and Hampson, D. 1. (2003) A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Tech. 108, 95-117 https://doi.org/10.1016/S0377-8401(03)00163-9
  12. Yu, L. L. (2000) Anti-diarrheal effect of water extract of Evodiae fructus in mice. J. Ethnopharmacol. 73, 39-45 https://doi.org/10.1016/S0378-8741(00)00267-1
  13. Kanauchi, O. (1998) Genninated barley foodstuff improves constipation induced by loperamide in rat. Biosci. Biotechnol. Biochem. 62, 1788-1790 https://doi.org/10.1271/bbb.62.1788
  14. Shimotoyodome, A., Meguro, S., Hase, T, Tokimitsu, 1. and Sakata, T (2000) Decreased colonic mucus in rat with loperamide-induced constipation. Compo Biochem. Physiol. Part A. 126, 203-21 https://doi.org/10.1016/S1095-6433(00)00194-X
  15. Loeschke, K., Schmid, T and Farack, U. M. (1989) Inhibition by loperamide of mucus secretion in the rat colon in vivo. Eur. J. phamwcol. 170, 41-46 https://doi.org/10.1016/0014-2999(89)90131-3
  16. Foo, H. L., Gronning, L. M., Goodenough, L., Bones, A. M., Danielsen, B. E., Whiting, D. A. and Rossiter, 1. T (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS. lett. 468, 243-246 https://doi.org/10.1016/S0014-5793(00)01176-5