Environmental Impact Assessment by Marine Cage Fish Farms: II. Estimation of Hydrogen Sulfide Oxidation Rate at $O_2$-H$_2$S Interface and Sulfate Reduction Rate in Anoxic Sediment Layer

해상 어류가두리양식장의 환경영향 평가: II. 가두리 양식장 퇴적물의 산소-황화수소 경계면에서 황화수소의 산화율 및 무산소 퇴적층에서 황산염 환원율 추정

  • 이재성 (국립수산과학원 연구관리과) ;
  • 김기현 (충남대학교 해양학과) ;
  • 유준 (국립수산과학원 남해수산연구소) ;
  • 이필용 (국립수산과학원 남해수산연구소) ;
  • 정래홍 (국립수산과학원 환경관리팀) ;
  • 이원찬 (국립수산과학원 연구관리과) ;
  • 한정희 (기초과학지원연구소) ;
  • 이용화 (국립수산과학원 남해수산연구소)
  • Published : 2004.05.01

Abstract

We measured the vertical profiles of $O_2$, H$_2$S, and pH in sediment pore water beneath marine cage fish farms using a microsensor with a 25 ${\mu}{\textrm}{m}$ sensor tip size. The sediments are characterized by high organic material load. The oxygen consumption, hydrogen sulfide oxidation, and sulfate reduction rates in the microzonations (derived from the vertical distribution of chemical species concentration) were estimated by adapting a simple one-dimensional diffusion-reaction model. The oxygen penetration depth was 0.75 mm. The oxic microzonations were divided into upper and lower layers. Due to hydrogen sulfide oxidation within the oxic zone, the oxygen consumption rate was higher in the lower layer. The total oxygen consumption rate integrated with reaction zone depth was estimated to be 0.092 $\mu$mol $O_2$cm$^{-2}$ hr$^{-1}$ . The total hydrogen sulfide oxidation rate occurring within 0.7 mm thickness was estimated to be 0.030 $\mu$mo1 H$_2$S cm$^{-2}$ hr$^{-1}$ , and its turnover time in the oxic sediment layer was estimated to be about 2 minutes. This suggests that hydrogen sulfide was oxidized by both chemical and microbial processes in this zone. The molar consumption ratio, calculated to be 0.84, indicates that either other electron accepters exit on hydrogen sulfide oxidation, or elemental sulfur precipitation occurs near the $O_2$- H$_2$S interface. Total sulfate reduction flux was estimated to be 0.029 $\mu$mol cm$^{-2}$ hr$^{-1}$ , which accounted for more than 60% of total $O_2$ consumption flux. This result implied that the degradation of organic matter in the anoxic layer was larger than in the oxic layer.

유기물이 많이 유입되는 해상어류가두리 양식장 퇴적물에서 전극 크기가 25$mu extrm{m}$인 미세전극을 이용하여 공극수의 산소, 황화수소, pH의 미세연직 농도를 측정하였다. 산소와 황화수소의 연직분포에서 얻어진 미세구간에 1차 확산ㆍ반응모델을 적용하여 각 구간에서의 산소 소모율, 황화수소 산화율, 황산염의 환원율을 추정하였다. 산소투과깊이는 0.75 mm였으며, 미세구간은 상부와 하부층 2개로 나누어졌다. 산소소모는 황화수소의 산화 영향으로 상부층에 비해 하부층에서 높았고 총산소소모플럭스는 0.092 $\mu$mol $O_2$$cm^{-2}$ $hr^{-1}$였다. 산화층에서 황화수소 산화는 0.7 mm 두께에서 0.030$\mu$mo1 H$_2$S $cm^{-2}$ $hr^{-1}$의 결과를 나타냈으며, 이 곳에서 황화수소의 turnover time은 약 2분으로 화학적 산화와 생물학적 산화가 동시에 일어나고 있었다. 황화수소와 산소의 소모율 비는 0.84로 황화수소 산화에 산소 이외의 다른 전자수용체가 사용되거나 산소-황화수소 경계면 주변에서 황 침전의 가능성을 시사하고 있었다. 추정된 총 황산염 환원 플럭스는 0.029$\mu$mol $cm^{-2}$ $hr^{-1}$로서 총산소소모플럭스의 60% 이상을 차지하고 있어 무산소 환경에서 유기물 분해가 산화환경에서보다 큰 역할을 하는 것으로 나타났다.

Keywords

References

  1. 황해 경기만 반월조간대 퇴적물 내의 황하물 형성과 행동에 관한 연구 v.28 김범수;이창목
  2. 2002년도 수산시험연구사업 최종 평가 보고서 남해수산연구소
  3. 산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정. v.8 이재성;김기현;유준;정래홍;고태승
  4. 해상 어류가두리양식장의 환경영향평가: I. 퇴적물 산소 소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환 v.9 이재성;정래홍;김기현;권정노;이원찬;이필용;구준호;최우정
  5. 해양환경의 환산염 환월율 조전요입 및 유기물 분해에 있어 황산염 환원의 중요성 v.8 현정호;이홍금;권개경
  6. 하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력 v.6 현정호;목진숙;조혜연;조병철;최중기
  7. Deep-Sea Res. v.42 Sulfate reduction rates and low molecular weight falty acid concentration in the water column and surficial scdiments of the Black Sea. Albert,D.B.;C.Taylor;C.S.Martens
  8. Geochim. Cosmochim. Acta v.52 Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Aller,R.C.;P.D.Rude
  9. Geochim. Cosmochim. Acta v.48 Fate of organic carbon reaching the sea floor: A status report Bender,M.L.;D.T.Heggies
  10. Limnol. Oceanogr. v.43 Interprestation of measured concentration profiles in sediment pore water. Berg,P.;N.Risgaard-Petersen;S.Rysgaard
  11. Early diagenesis: A theoretical approach. Bemer,R.A.
  12. J. Ecol. v.56 Models describing the diffusion of oxygen and other mobile constiluents across mod-water interface. Bouldin,D.R.
  13. Anal.Chem. v.49 Direct determination and calculation of aqueous hydrogen sulfide Broderius,S.J.;L.L.Smith
  14. Tellus v.72 Gas exchange rates between air and sea. Broccker,W.S.;T.H.Peng
  15. In situ monitoring of aquatic system: Chemical analysis and speciation Buffle,J.;G.Horvai
  16. Mar. Chem. v.52 Oxygen penetration depths and fluxes in marine sediments Cai,W.J.;F.L.Sayles
  17. Limnol. Oceanogr. v.14 Spectrophotometric determination of gydrogen sulfide in natural waters Cline,J.D.
  18. Limnol. Oceanogr. v.31 Mechanism of hydrogen ion neutralization in an experimentally acidified lake Cook,R.B.;C.A.Kelly;D.W.Schindler;M.A.Turner
  19. Deep-Sea Res. II v.44 Microbial respiration and diffusive oxygen uptake of deep-sea sediments in the Southern Ocean (ANTARES-I cruise). De Wit,R.;J.C.Relexans;T.Bouvier;D.J.W.Moriarty
  20. Geomicrobiology Ehrtich,H.L.
  21. Con. Shelf Res. v.17 Oxygenbudgets calculated from insitu oxygen microprofiles for Northern Adriatic sediments. Epping,E.;W.Helder
  22. Geochim. Cosmochim. Acta. v.43 Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantie: Suboxic diagenesis. Froelich,P.H.;G.P.Klinkhammer;M.L.Bender;N.A.Luedtke;G.R.Health;D.Cullen;P.Davphin;D.Hammond;B.Hartmann
  23. Deep-Sea Res. I v.41 Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurement. Glud,R.N.;J.K.Gundersen;H.,B.B.Jorgensen;N.P.Revsbech;H.D.Schulz.
  24. American Chemical Society In ACS Symposium Series 811. Environmental Electrochemistry, Analysis of Trace Element Biogeochemistry. Glud,R.N.;J.K.Gundersen;Taillefert,M.(ed.);T.F.Rozan(ed.)
  25. Limnol. Oceanogr. v.48 no.3 Sea-sonal dynamics of benthic $O_{2}$ uptake in a semienclosed bay: Importance of diffusion and faunal activity. Glud.R.N.;J.K.Gundersen;H.Roy;B.B.Jorgensen
  26. Estuar. Coast. Shelf Sci. v.49 The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France)- the relative importance of chemical and biological processes. Heijs,S.K.;H.M.Jonkers;H.van Gemerden;B.E.M.Schaub;L.J.Stal
  27. Biogeochem. v.2 The pH of sediment underlying acidified waters. Heglihy,A.T.;A.L.Mills
  28. Mar. Ecol. Progr. Ser. v.80 Impact of fish cage farming on metabolism and sulfate reduction of underlying sediment Holmer,M.;E.Kristensen
  29. Fresh Biol. v.46 Sulphate reduction and sulplrur Cycling in take sediment; A review. Holmer,M.;P.Storkholm
  30. Earth Planet. Sci. Lett. v.61 Pore waters of the central Pucific Ocean: Nutrient results. Jahnke,R.;D.Heggie;S.Emerson;V.Grundmanis
  31. Anal. Chem. v.68 An amperometric microsensor for the determination of $H_{2}S$ in aquatic environments. Jeroschewski,P.;C.Steuckart;M.Kuhl
  32. Nature v.296 Mineralization of organic matter in the sea bed-the rote of sulphate reduction Jorgensen,B.B.
  33. Appl. Environ. Microbiol. v.58 Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms Kuhl.M.;B.B.Jorgensen
  34. Aquur. Microbial Eco. v.15 A $H_{2}S$ microsensor for profiling biofilms and sediments: Application in an acidic lake sediment. Kuhl.M;C.Steuckart;G.Eickert;P.Jeroschewski
  35. Oceanol. Acta. v.26 Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: An estimation by in situ micro-electrodes and laboratory mini-electrodes. Lansard,B.;C.Rabouille;D.Massias
  36. J. Oceanol. Soc. Kor. v.25 Porewater chemistry of interidal mudflat sediments: 1. Seasonal variability of nutrient profiles (S, N, P) Lee,C.;D.Kim
  37. Limnol. Oceanogr. v.43 Simultaneous measurement of $O_{2}$, Mn, Fe, I, and S(-II) in marine pore waters with a solid-state voltametric microsensor. Luther,G.W.;P.J.Brendel,B.L.;Lewis,B.Sundby;L.Lefrancois;N.Silverberg;D.B.Nuzzio
  38. Environ. Sci. Technol. v.33 In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved $O_{2}$, Mn, Fe, S(-2), and pH in porewaters. Luther,G.W.;C.E.Reimers;D.B.Nuzzio;D.Lovalvo
  39. Mar. Geol. v.158 Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea. Luckge,A.;M.Ercegovac;H.Strauss;R.Littke
  40. Mar. Chem. v.18 The thermodyamics and kinetics of hydrogen sulfide system in natural waters. Miltero,F.J.
  41. Micro. Ecol. v.19 Denitrification and oxygen respiration in biofilms studies with a microsensor for nitrous oxide and oxygen Nielsen,L.P.;P.B.Christensen;N.P.Revsbech
  42. Limnol. Oceanogr. v.28 Micro-electrode studies of the phylosynthesis and $O_{2}, H_{2}S$, and pH profiles of a microbial rnal. Revsbech,N.P.;B.B.Jorgensen;T.H.Blackbum
  43. Adv. Micro. Eco. v.9 Micrielectrode: Their use in microbial ecology. Revsbech,N.P.;B.B.Jorgensen
  44. American Chemical Society 2002. In ACS Symposium Series 811, Seasonal variations of soluble organic-Fe(III) in sediment porewaters as revealed by voltammetric microelectrodes. Taillefert,M.;T.F.Rozan;B.T.Glazer;J.Herszage;R.E.Trouwborst;G.W.Luther,III
  45. Environ. Microbiol. v.4 no.2 Microenvironments and microbial community structure in sediments. Tankere,S.P.C.;D.G.Boume;F.L.L.Muller;V.Torsvik
  46. Geochim. Cosmochim. Acta v.58 Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Thamdmp.B.;K.Finster;H.Fossing;J.W.Hansen;B.B.Jorgensen
  47. Rev. Biol. Trop. v.44 no.SUP.3 A biogeochemical survey of the anoxic basin Golfo Dulce, Costa Rica. Thandrup.E.;D.E.Canfield;T.G.Ferdehman;R.N.Glud;J.K.Gunderseo
  48. Limnol. Oceanogr. v.27 Diffusion coefficients in nearshore marine sediments Ullman,W.J.;R.C.Aller
  49. Deep-Sea Res. I. v.48 Deep penetrating henthic oxygen profiles measured in situ by oxygen optodes. Wenzhofer,F.;O.Holby;O.Kohls
  50. Mar. Pollut. Bull. v.31 The environmental impact of marine fish culture: Towards a sustainable future. Wu,R.S.S.