DOI QR코드

DOI QR Code

Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties

부분소결공정에 의한 다공질 탄화규소 세라믹스의 제조 및 특성

  • 김신한 (서울시립대학교 산업기술연구소) ;
  • 김영욱 (서울시립대학교 신소재공학) ;
  • 윤중열 (한국기계연구원 세라믹재료그) ;
  • 김해두 (한국기계연구원 세라믹재료그룹)
  • Published : 2004.07.01

Abstract

Addition of large particles restrains densification by small particles in mixed particle systems. In the present study, large SiC whiskers or particles were introduced into small particles for restraining densification and the mixtures were sintered using yttrium aluminum garnet (Y$_3$A1$\sub$5/O$\sub$12/, YAG) as a sintering additive. By controlling the content of large SiC whiskers or particles and the applied pressure during sintering, porous SiC ceramics, with a porosity ranging from 0.3% to 39%, were fabricated. Porosity increased with increasing the content of restraining materials. SiC whiskers were more effective than large SiC partcles for restraining densification. Permeability of the porous SiC ceramics increased with increasing the porosity. Flexural strength decreased with increasing porosity. A noticeable increase in strain to failure was observed in the porous ceramics with a porosity ranging from 18% to 39%.

일반적으로 혼합분말의 소결에서 작은 입자에 큰 입자의 첨가는 소결성의 저하를 가져온다. 본 연구에서는 이러한 원리를 이용하여 작은 SiC 입자에 큰 SiC 휘스커 또는 큰 SiC 입자를 첨가하여 소결성을 저하시키고, YAG(Y$_3$A1$_{5}$O$_{12}$)상을 소결 첨가제로 사용함으로서 다공질 SiC 세라믹스를 제조하였다. 제조된 다공질 SiC 세라믹스의 기공율은 큰 입자의 함량과 소결 압력을 제어함으로서 0.3-39% 범위에서 제어할 수 있었다. 기공율은 큰 입자의 함량이 증가함에 따라 증가하였고, SiC 휘스커를 첨가하는 것이 큰 SiC 입자를 첨가하는 것 보다 기공율을 높이는데 효과적이었다. 제조된 다공질 세라믹스에서 기체의 통기성은 기공율이 증가함에 따라 증가하였고, 굽힘강도는 기공율이 증가함에 따라 감소하였다. 기공율이 18% 이상인 다공질 SiC 세라믹스의 경우에 주목할 만한 변형율이 관찰되었다.

Keywords

References

  1. J. Kor. Ceram. Soc. v.39 no.10 Fabrication of Double-layered Porous Materials J. Y. Yun;H. D. Kim;C. H. Hong https://doi.org/10.4191/KCERS.2002.39.10.919
  2. J. Kor. Ceram. Soc. v.27 no.2 Studies on the Oxide Bonded Silicon Cabide Porous Matrials J. C. Lee;I. H. Kook
  3. J. Mater. Sci. v.39 no.10 Effect of Inert filler Addition on Pore Size and Porosity of Closed-Cell Silicon Oxycarbide Foams S. H. Kim;Y. W. Kim;C. B. Park https://doi.org/10.1023/B:JMSC.0000026964.88284.ab
  4. J. Am. Ceram. Soc. v.82 no.3 Silicon Oxycabide Ceramic Foams from a Preceramic Polymer P. Colombo;M. Modesti https://doi.org/10.1111/j.1151-2916.1999.tb01803.x
  5. Am. Ceram. Soc. Bull. v.76 Gelcasting Foams for Porous Ceramics P. Sepulveda
  6. Mat. Res. Innovat. v.6 no.1 Ceramic Foams from Preceramic Polymers P. Colombo;J. R. Hellmann https://doi.org/10.1007/s10019-002-0209-z
  7. J. Am. Ceram. Soc. v.83 no.12 Properties of Highly Porous Hydroxyapatite Obtained by the Gelcasting of Foams P. Sepulveda;F. S. Ortega;M. D. M. Innocentini;V. C. Pandolfelli https://doi.org/10.1111/j.1151-2916.2000.tb01677.x
  8. J. Am. Ceram. Soc. v.84 no.10 Conductive Ceramic Foams from Preceramic Polymers P. Colombo;T. Gambaryan-Roisman;M. Scheffler;P. Buhler;P. Greil https://doi.org/10.1111/j.1151-2916.2001.tb01000.x
  9. J. Eur. Ceram. Soc. v.19 Processing of Cellular Ceramics by Foaming and in situ Polymerization of Organic Monomers P. Sepulveda;J. G. P. Binner https://doi.org/10.1016/S0955-2219(99)00024-2
  10. J. Mater. Sci. Lett. v.21 no.21 Fabrication of Porous Preceramic Polymers Using Carbon Dioxide Y. W. Kim;S. H. Kim;X. Xu;C. H. Choi;C. B. Park;H. D. Kim https://doi.org/10.1023/A:1020820608722
  11. Comp. Sci. & Tech. v.63 no.14 Processing of Microcellular Preceramics Using Carbon Dioxide Y.-W. Kim;C. B. Park https://doi.org/10.1016/S0266-3538(03)00270-7
  12. J. Am. Ceram. Soc. v.86 no.12 Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide Y.-W. Kim;S. H. Kim;C. Wang;C. B. Park https://doi.org/10.1111/j.1151-2916.2003.tb03641.x
  13. J. Kor. Ceram. Soc. v.39 no.10 Mechanical Properties of Porous Reaction Bonded Silicon Carbide S. S. Hwang;S. W. Park;J. H. Han;K. S. Han;C. M. Kim https://doi.org/10.4191/KCERS.2002.39.10.948
  14. J. Kor. Ceram. Soc. v.20 no.2 Reactive Sintering of SiC Y.-W. Kim;J. G. Lee
  15. Ceram. Int. v.7 no.3 The Investigation of High-Temperature Strength of SiC Based Refractories M. Komac https://doi.org/10.1016/0272-8842(81)90006-7
  16. J. Mater. Sci. v.34 Influence of the Preparation Conditions on the Synthesis of High Surface Area SiC for Use as a Heterogeneous Catalyst Support N. Keller;C. Pham-Huu;S. Roy;M. J. Kedoux;C. Estournes;J. Guille https://doi.org/10.1023/A:1004681806843
  17. J. Non-Cryst. Solids v.121 Synthesis of Cellular Inorganic Materials by Foaming Sol-Gels W. Wu;T. Fujiu;G. L. Messing https://doi.org/10.1016/0022-3093(90)90167-K
  18. Adv. Ceram. Mater. v.2 no.4 Open Cell, Low-Density Ceramics Fabricated from Reticulated Polymer Substrates F. F. Lange;K. T. Miller
  19. J. Mater. Sci. v.26 Pressureless Sintering of $Al_2O_3$-SiC Whisker Composites Y.-W. Kim;J. G. Lee https://doi.org/10.1007/BF00544471
  20. J. Mater. Sci. v.38 Microstructure and Fracture Toughness of Liquid-Phase-Sintered ${\beta}$-SiC Containing ${\beta}$-SiC Whiskers as Seeds S. H. Kim;Y.-W. Kim;M. Mitomo https://doi.org/10.1023/A:1022812427677
  21. J. Mater. Sci. v.35 Pressureless Sintering of SiC-TiC Composites with Improved Fracture Toughness Y.-W. Kim;S. G. Lee;Y. I. Lee https://doi.org/10.1023/A:1004848828322
  22. Am. Ceram. Soc. Bull. v.81 no.5 Clayware Mechanical Properties Porosity Dependent H. S. Kim;T. Guifang;J. Y. Kim
  23. Introduction to Ceramics W. D. Kingery;H. K. Bowen;D. R. Uhlman
  24. Porosity of Ceramics R. W. Rice
  25. J. Am. Ceram. Soc. v.80 no.2 Strain Tolerant Porous Nitride Y. Shigegaki;M. E. Brito;K. Hiaro;M. Toriyama;S. Kanzaki https://doi.org/10.1111/j.1151-2916.1997.tb02856.x

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.625
  3. Composite Membrane by Dip-coating Process vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.485
  4. Gas Permeation of Y2O3-SiC Composite Membrane vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.234
  5. Preparation and Permeation of La2Ce2O7 Membrane vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.269
  6. Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn vol.23, pp.1, 2016, https://doi.org/10.4150/KPMI.2016.23.1.49
  7. Preparation and characterization of macroporous SiC ceramic membrane for treatment of waste water pp.1573-4854, 2018, https://doi.org/10.1007/s10934-017-0528-5
  8. Processing of Polymer-Derived Microcellular Ceramics Containing Reactive Fillers vol.534-536, pp.1662-9752, 2007, https://doi.org/10.4028/www.scientific.net/MSF.534-536.989
  9. Processing Techniques of a Silicon Carbide Heat Exchanger and its Capable Properties – A Review vol.787, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.787.513
  10. Processing and mechanical properties of porous silica-bonded silicon carbide ceramics vol.11, pp.5, 2005, https://doi.org/10.1007/BF03027504