DOI QR코드

DOI QR Code

Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process

Nitrided Pressureless Sintering 공정을 이용한 질화규소 세라믹스의 제조 및 특성

  • Cheon, Sung-Ho (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Chung, Yong-Hee (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Seo, Doo-Won (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Shi-Woo (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Hong, Kee-Soeg (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Woo, Sang-Kuk (Energy Materials Research Center, Korea Institute of Energy Research)
  • 천승호 (한국에너지기술연구원 에너지재료연구센터) ;
  • 한인섭 (한국에너지기술연구원 에너지재료연구센터) ;
  • 정용희 (한국에너지기술연구원 에너지재료연구센터) ;
  • 서두원 (한국에너지기술연구원 에너지재료연구센터) ;
  • 이시우 (한국에너지기술연구원 에너지재료연구센터) ;
  • 홍기석 (한국에너지기술연구원 에너지재료연구센터) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터)
  • Published : 2004.12.01

Abstract

The mechanical properties and microstructure and thermal properties of Nitrided Pressureless Sintering(NPS) silicon nitride ceramics, containing three type of $Al_{2}O_3,\;Y_{2}O_3$ sintering additives, were investigated. Also, we have investigated the effect of silicon metal content changing with 0, 5, 10, 15, and $20wt\%$ Si in each composition. In $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3,\;and\;5wt\%$ Si composition, silicon nitride sintered body was successfully densified to a high density. The average 4-point flexural strength and relative density of these specimens were 500 MPa and 98% respectively. Also, Thermal expansion coefficient and thermal conductivity of specimens at room temperature were $2.89{\times}10^{-6}/^{\circ}C\;and\;28W/m^{\circ}C$, respectively. The flexural strength of sintered specimens after thermal shock test of 20,000 cycles was maintained as-received value of 500 MPa.

Nitrided Pressureless Sintering(NPS) 공정에 의한 질화규소 세라믹스의 기계적 특성, 미세구조 및 열적 특성을 세 가지조성을 갖는 $Al_{2}O_3,\;Y_{2}O_3$ 소결조제의 변화에 따라 조사하였다. 또한 각 조성에서 금속 실리콘의 첨가량을 0, 5, 10, 15, 그리고 $20wt\%$로 변화를 주어 실리콘의 첨가효과를 조사하였다. $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3$, 그리고 $5wt\%$ Si 조성에서 질화규소 소결체의 치밀화가 진행되었으며, 4점 꺽임강도와 상대밀도는 각각 500 MPa과 $98\%$를 나타내었다. 또한 상온에서 열팽창계수와 열전도도는 각각 $2.89{\times}10^{-6}/^{\circ}C$$28W/m^{\circ}C$를 나타내었으며, 20,000회의 열충격 싸이클을 반복한 후, 꺽임강도를 측정한 결과, 초기 500MPa의 강도를 유지하고 있었다.

Keywords

References

  1. A. J. Moulson, 'Review: Reaction-Bonded Silicon Nitride: Its Formation and Properties,' J. Mater. Sci., 14 1017-51 (1979) https://doi.org/10.1007/BF00561287
  2. S. Y. Lee, 'Fabrication of Si3N4/SiC Composite by Reaction-Bonding and Gas-Pressure Sintering,' J. Am. Ceram. Soc., 81 [5] 1262-68 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02477.x
  3. W. Y. Park, D. S. Park, H. D. Kim, and B. D. Han, 'SinteTing Mechanical Properties of Silicon Nitride Prepared with a Low-Cost Silicon Nitride Powder,' J. Kor. Ceram. Soc., 38 [11] 987-92 (2001)
  4. J. Mukerji and B. Prakash, 'Wear of Nitrogen Ceramics and Composites in Contact with Bearing Steel Under Oscillating Sliding Condition,' Ceram. International, 24 19-24 (1998) https://doi.org/10.1016/S0272-8842(96)00070-3
  5. F. L. Riley, 'Silicon Nitride and Related Materials,' J. Am. Ceram. Soc., 83 [2] 245-65 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
  6. H. T. Lin and M. K. Ferber, 'Mechanical Reliability Evalution of Silicon Nitride Ceramic Components After Exposure in Industrial Gas Turbines,' J. Euro. Ceram. Soc., 22 2789-97 (2002) https://doi.org/10.1016/S0955-2219(02)00146-2
  7. H. Kita, H. Hyuga, T. Hirai, T. Iizuka, and K. Ohsumi, 'Strength and Microstructure of Silicon Nitride Fabricated by Post-Sintering Process Using Low-Purity Silicon Powder as Raw Materials,' J. Ceram. Soc. lpn., 112 [4] 214-18 (2004) https://doi.org/10.2109/jcersj.112.214
  8. A. Phyzik and D. B. Beanman, 'Microstructure and Properties of Self-Reinforced Silicon Nitride,' J. Am. Ceram. Soc., 76 [11] 2737-44 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04010.x
  9. J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, 'Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders,' J. Kor. Ceram. Soc., 39 [1] 45-50 (2002) https://doi.org/10.4191/KCERS.2002.39.1.045
  10. M. K. Cinibulk, G. Tomas, and S. M. Johnson, 'Strength and Creep Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics,' J. Am. Ceram. Soc., 75 [8] 2050-55 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04464.x
  11. D. P H. Hasselman, 'Unified Theory of Thermal Shock Fracture Initiation, Crack Propagation in Brittle Ceramics,' J. Am. Ceram. Soc., 52 600-04 (1969) https://doi.org/10.1111/j.1151-2916.1969.tb15848.x
  12. W. D. Kingery, J. F. R. L. Coble, and T. Vasilos, 'Thermal Conductivity : X, Data for Several Pure Oxide Materials Corrected to Zero Porosity,' J.Am. Ceram. Soc., 37107-10 (1954)