DOI QR코드

DOI QR Code

Evidences that β-Lactose Forms Hydrogen Bonds in DMSO

  • Ko, Hyun-Sook (Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University) ;
  • Shim, Gyu-Chang (Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Chemistry and Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2005.12.20

Abstract

Glycoproteins and glycolipids play key roles in intracellular reactions between cells and their environments at the membrane surface. For better understanding of the nature of these events, it is necessary to know threedimensional structures of those carbohydrates, involved in them. Since carbohydrates contain many hydroxyl groups which can serve both as hydrogen bond donors and acceptors, hydrogen bond is an important factor stabilizing the structure of carbohydrate. DMSO is an aprotic solvent frequently used for the study of carbohydrates because it gives detailed insight into the intramolecular hydrogen bond network. In this study, conformational properties and the hydrogen bonds in $\beta$-lactose in DMSO are investigated by NMR spectroscopy and molecular dynamics simulations. NOEs, temperature coefficients, deuterium isotope effect, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O3 and HO2' in $\beta$-lactose and also OH3 in $\beta$-lactose may form an intermolecular hydrogen bond with DMSO.

Keywords

References

  1. Rutenber, E.; Robertus, J. D. Proteins; Struct., Funct., Genet. 1991, 10, 260 https://doi.org/10.1002/prot.340100310
  2. Ambrosi, M.; Cameron, N. R.; Davis, B. G. Org. Biomol. Chem. 2005, 3(9), 1593 https://doi.org/10.1039/b414350g
  3. Gabius, H. J.; Siebert, H. C.; Andre, S.; Jimenez-Barbero, J.; Rudiger, H. Chembiochem. 2004, 5(6), 740 https://doi.org/10.1002/cbic.200300753
  4. Bevilacqua, V. L.; Kim, Y.; Prestegard, J. H. Biochemistry 1991, 31, 9339 https://doi.org/10.1021/bi00154a003
  5. Bevilacqua, V. L.; Thomson, D. S.; Prestegard, J. H. Biochemistry 1990, 29, 5529 https://doi.org/10.1021/bi00475a017
  6. Lee, K.; Lee, S.; Jhon, G.-J.; Kim, Y. Bull. Korean Chem. Soc. 1996, 19, 569
  7. Acquotti, D.; Sonnino, S. Methods Enzymol. 2000, 312, 247 https://doi.org/10.1016/S0076-6879(00)12914-3
  8. French, A. D.; Dowd, M. K.; Reilty, P. J. J. Mol. Struct. 1997, 395, 271
  9. French, A. D.; Brady, J. W. Computer Modeling of Carbohydrate Molecules; American Chemical Society: Washinton, DC, 1990
  10. Cheong, Y.; Shim, G.; Kang, D.; Kim, Y. J. Mol. Struct. 1999, 475, 219 https://doi.org/10.1016/S0022-2860(98)00511-0
  11. Shim, G.; Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 1997, 18, 415
  12. Lee, K.; Lee, S.; Jhon, G.; Kim, Y. Bull. Korean Chem. Soc. 1998, 19, 566
  13. Kozar, T.; Tvaroska, I.; Carver, J. P. Glycoconj J. 1998, 15(2), 187 https://doi.org/10.1023/A:1006976408074
  14. Hoog, C.; Rotondo, A.; Johnston, B. D.; Pinto, B. M. Carbohydr Res. 2002, 337, 2023 https://doi.org/10.1016/S0008-6215(02)00218-5
  15. Oh, J.; Kim, Y.; Won, Y. Bull. Korean Chem. Soc. 1995, 16, 1153
  16. Tvaroska, I.; Taravel, F. R.; Utille, J. P.; Carver, J. P. Carbohydr. Res. 2002, 337, 353 https://doi.org/10.1016/S0008-6215(01)00315-9
  17. Kuttel, M.; Brady, J. W.; Naidoo, K. J. J. Comput. Chem. 2002, 3, 1236
  18. Naidoo, K. J.; Denysyk, D.; Brady, J. W. Protein Eng. 1997, 10, 1249 https://doi.org/10.1093/protein/10.11.1249
  19. Brady, J. W.; Schmidt, R. K. J. Phys. Chem. 1993, 97, 958 https://doi.org/10.1021/j100106a024
  20. Stevensson, B.; Hoeoeg, C.; Ulfstedt-Jaekel, K.; Huang, Z.; Widmalm, G.; Mallnlak, A. J. Phys. Chem. B 2000, 104, 6065 https://doi.org/10.1021/jp0002805
  21. Jimenez, B. J. L.; Van Rooijen, J. J.; Erbel, P. J.; Leeflang, B. R.; Kamerling, J. P.; Vliegenthart, J. F. J. Biomol. NMR 2000, 16, 59 https://doi.org/10.1023/A:1008300916721
  22. Imberty, A. Curr. Opin. Struct. Biol. 1997, 7, 617 https://doi.org/10.1016/S0959-440X(97)80069-3
  23. French, A. D.; Dowd, M. K.; Reilty, P. J. J. Mol. Struct. 1997, 395, 271
  24. Shim, G.; Shin, J.; Kim, Y. Bull. Korean Chem. Soc. 2004, 25, 198 https://doi.org/10.5012/bkcs.2004.25.2.198
  25. Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 2004, 25, 838 https://doi.org/10.1007/s11814-008-0139-6
  26. Christofides, J. C.; Davies, D. B.; Martin, J. A.; Rathbone, E. B. J. Am. Chem. Soc. 1986, 108, 5738 https://doi.org/10.1021/ja00279a013
  27. Reynhardt, E. C.; Reuben, J. J. Am. Chem. Soc. 1987, 109, 316 https://doi.org/10.1021/ja00236a004
  28. Adams, B.; Lerner, L J. Am. Chem. Soc. 1992, 114, 4827 https://doi.org/10.1021/ja00038a055
  29. Weimer, T.; Bukowski, R.; Young, N. M. J. Biol. Chem. 2000, 275, 37006 https://doi.org/10.1074/jbc.M005092200
  30. Bekiroglu, S.; Sandstrom, C.; Norberg, T.; Kenne, L. Carbohydrate Research 2000, 328, 409 https://doi.org/10.1016/S0008-6215(00)00104-X
  31. Molecular Simulations Inc.: San Diego, CA, USA
  32. Bodenhausen, G.; Freeman, R.; Niedermeyer, R.; Turner, D. L. J. Magn. Reson. 1977, 26, 133
  33. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355
  34. Kessler, H.; Gehrke, M.; Griesinger, C. Angew. Chem. 1988, 100, 507 https://doi.org/10.1002/ange.19881000407
  35. Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R. J. Magn. Reson. 1990, 86, 304
  36. Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95 https://doi.org/10.1080/00268978000102601
  37. Bothner-By, A. A.; Stephens, R. L.; Lee, J. J. Am. Chem. Soc. 1984, 106, 811 https://doi.org/10.1021/ja00315a069
  38. Brooks, S. R.; Bruccoleir, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187 https://doi.org/10.1002/jcc.540040211
  39. Liu, H.; Muller, F.; Gunsteren, W. F. J. Am. Chem. Soc. 1995, 117, 4363 https://doi.org/10.1021/ja00120a018
  40. Burgi, R.; Daura, X.; Mark, A.; Bellanda, M.; Mammi, S.; Peggion, E.; Van Gunsteren, W. J. Pept. Res. 2001, 57, 107 https://doi.org/10.1034/j.1399-3011.2001.00793.x

Cited by

  1. The interaction between tea polyphenols and rice starch during gelatinization vol.17, pp.6, 2011, https://doi.org/10.1177/1082013211430294
  2. Understanding the crystallization behavior of α-lactose monohydrate (α-LM) through molecular interaction in selected solvents and solvent mixtures under different growth conditions vol.18, pp.13, 2016, https://doi.org/10.1039/C5CE02548F
  3. Cellulose Swelling by Aprotic and Protic Solvents: What are the Similarities and Differences? vol.209, pp.12, 2008, https://doi.org/10.1002/macp.200800021
  4. Conformations of stevastelin C3 analogs: Computational deconvolution of NMR data reveals conformational heterogeneity and novel motifs vol.93, pp.11, 2010, https://doi.org/10.1002/bip.21504
  5. Efficiency of Rotational Operators for Geometric Manipulation of Chain Molecules vol.28, pp.10, 2005, https://doi.org/10.5012/bkcs.2007.28.10.1705
  6. Tertiary Structure of Ginsenoside Re Studied by NMR Spectroscopy vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2209
  7. 3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling vol.28, pp.6, 2005, https://doi.org/10.5012/bkcs.2007.28.6.941
  8. Strongly thixotropic viscosity behavior of dimethylsulfoxide solution of polyrotaxane comprising α-cyclodextrin and low molecular weight poly(ethylene glycol) vol.48, pp.24, 2005, https://doi.org/10.1016/j.polymer.2007.09.036
  9. The Discodermolide Hairpin Structure Flows from Conformationally Stable Modular Motifs vol.53, pp.1, 2005, https://doi.org/10.1021/jm9015284
  10. Dictyostatin Flexibility Bridges Conformations in Solution and in the β-Tubulin Taxane Binding Site vol.133, pp.8, 2005, https://doi.org/10.1021/ja1023817
  11. Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink vol.25, pp.40, 2005, https://doi.org/10.1002/adma.201302147