Modulation of the caveolin-3 and Akt status in caveolae by insulin resistance in H9c2 cardiomyoblasts

Ha, Hyun-Il;Pak, Yun-Bae

  • Published : 2005.06.30

Abstract

We investigated glucose uptake and the translocation of Akt and caveolin-3 in response to insulin in H9c2 cardiomyoblasts exposed to an experimental insulin resistance condition of 100 nM insulin in a 25 mM glucose containing media for 24 h. The cells under the insulin resistance condition exhibited a decrease in insulin-stimulated 2-deoxy[3H]glucose uptake as compared to control cells grown in 5 mM glucose media. In addition to a reduction in insulin-induced Akt translocation to membranes, we observed a significant decrease in insulin-stimulated membrane association of phosphorylated Akt with a consequent increase of the cytosolic pool. Actin remodeling in response to insulin was also greatly retarded in the cells. When translocation of Akt and caveolin-3 to caveolae was examined, the insulin resistance condition attenuated localization of Akt and caveolin-3 to caveolae from cytosol. As a result, insulin-stimulated Akt activation in caveolae was significantly decreased. Taken together, our data indicate that the decrease of glucose uptake into the cells is related to their reduced levels of caveolin-3, Akt and phosphorylated Akt in caveolae. We conclude that the insulin resistance condition induced the retardation of their translocation to caveolae and in turn caused an attenuation in insulin signaling, namely activation of Akt in caveolae for glucose uptake into H9c2 cardiomyoblasts.

Keywords

References

  1. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996;15:6541-51
  2. Bellacosa A, Testa JR, Staal SP, Tsichlis, PN. A retroviral oncogene, Akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991;254:274-7 https://doi.org/10.1126/science.1833819
  3. Bickel PE. Lipid rafts and insulin signaling. Am J Physiol Endocrinol Metab 2002;282:E1-E10
  4. Carvalho E, Eliasson B, Wesslau C, Smith U. Impaired phosphorylation and insulin-stimulated translocation to the plasma membrane of protein kinase B/Akt in adipocytes from Type II diabetic subjects. Diabetologia 2000;43:1107-15 https://doi.org/10.1007/s001250051501
  5. Clodi M, Vollenweider P, Klarlund J, Nakashima N, Martin S, Czech MP, Olefsky JM. Effects of general receptor for phosphoinositides on insulin and insulin-like growth factor I-induced cytoskeletal rearrangement, GLUT4 translocation, and deoxyribonucleic acid synthesis. Endocrinology 1998; 139:4984-90 https://doi.org/10.1210/en.139.12.4984
  6. Cohen AW, Combs TP, Scherer PE, Lisanti MP. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 2003a;285:E1151-E1160
  7. Cohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE, Lisanti MP. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissues. Am J Physiol Cell Physiol 2003b;285:C222-C235
  8. Cong L-N, Chen H, Li Y, Zhou L, McGibbon M, Taylor S, Quon M. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 1997;11:1881-90 https://doi.org/10.1210/me.11.13.1881
  9. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem 1999;274:1865-8 https://doi.org/10.1074/jbc.274.4.1865
  10. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKT blocks apoptosis. Cell 1997;88:435-7 https://doi.org/10.1016/S0092-8674(00)81883-8
  11. Galbiati F, Engelman JA, Volonte D, Zhang KL, Minetti C, Li M, Hou Jr H, Kneitz B, Edelmann W, Lisanti MP. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities, J Biol Chem 2001;276: 21425-33 https://doi.org/10.1074/jbc.M100828200
  12. Gratton J-P, Bernatchez, P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res 2004;94: 1408-17 https://doi.org/10.1161/01.RES.0000129178.56294.17
  13. Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE, Stralfors P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999;13:1961-71
  14. Ha H, Kwak HB, Lee BW, Kim HH, Lee ZH. Lipid rafts are important for the association of RANK and TRAF 6. Exp Mol Med 2003;35:279-84
  15. Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, Kikuchi T. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 2000;9:3047- 54 https://doi.org/10.1093/hmg/9.20.3047
  16. Hajduch E, Litherland GJ, Hundal HS. Protein kinase B (PKB/Akt)--a key regulator of glucose transport? FEBS Lett 2001;492:199-203 https://doi.org/10.1016/S0014-5793(01)02242-6
  17. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 1991;88:4147-75
  18. Kahn BB. Type 2 Diabetes: When insulin secretion fails to compensate for insulin resistance. Cell 1998;92:593-6 https://doi.org/10.1016/S0092-8674(00)81125-3
  19. Karlsson M, Thorn H, Parpal S, Stralfors P, Gustavsson J. Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J 2002;16:249-51
  20. Kawamura S, Miyamoto S, Brown JH. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 2003;278:31111-7 https://doi.org/10.1074/jbc.M300725200
  21. Kawanaka K, Han D-H, Gao J, Nolte LA, Holloszy JO. Development of glucose-induced insulin resistance in muscle requires protein synthesis. J Biol Chem 2001;276:20101-7 https://doi.org/10.1074/jbc.M010599200
  22. Kim B-W, Choo H-J, Lee J-W, Kim J-H, Ko Y-G. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp Mol Med 2004;36:476-85
  23. Kim S, Pak Y. Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells. Biochem Biophys Res Comm 2005;330:88-96 https://doi.org/10.1016/j.bbrc.2005.02.130
  24. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 1976;98:367-81 https://doi.org/10.1016/0014-4827(76)90447-X
  25. Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence Jr JC, Roth RA. Construction and characterization of a conditionally active version of the ser/thr kinase Akt. J Biol Chem 1998; 273:11937-43 https://doi.org/10.1074/jbc.273.19.11937
  26. Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S, Kasuga M. Requirement of atypical protein kinase Cλ for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocyte. Mol Cell Biol 1998;18:6971-82
  27. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996;271:2746-53 https://doi.org/10.1074/jbc.271.5.2746
  28. Mueckler M. Insulin resistance and the disruption of GLUT4 trafficking in skeletal muscle. J Clin Invest 2001;107:1211- 3 https://doi.org/10.1172/JCI13020
  29. Muller G, Hanekop N, Wied S, Frick W. Cholesterol depletion blocks redistribution of lipid raft components and insulinmimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes. Mol Med 2002;8:120-36
  30. Nelson BA, Robinson KA, Buse MG. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 2000;49:981-91 https://doi.org/10.2337/diabetes.49.6.981
  31. Olson AL, Trumbly AR, Gibson GV. Insulin-mediated GLUT4 translocation is dependent on the microtubule network. J Biol Chem 2001;276:10706-14 https://doi.org/10.1074/jbc.M007610200
  32. Parpal S, Karlsson M, Thorn H, Stralfors P. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 2001; 276:9670-8 https://doi.org/10.1074/jbc.M007454200
  33. Razani B, Woodman SE, Lisanti MP. Caveolae: From cell biology to animal physiology. Pharmacol Rev 2002;54: 431-67 https://doi.org/10.1124/pr.54.3.431
  34. Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. J Biol Chem 2000; 275:41447-57 https://doi.org/10.1074/jbc.M006951200
  35. Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta PS, Zhang X, Scherer PE, Lisanti MP. Crowded little caves: structure and function of caveolae. Cell Signal 1998;10: 457-63 https://doi.org/10.1016/S0898-6568(98)00007-2
  36. Sharma PM, Egawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J Biol Chem 1998;273:18528-37 https://doi.org/10.1074/jbc.273.29.18528
  37. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae membranes. J Biol Chem 1996;271:9690-6 https://doi.org/10.1074/jbc.271.16.9690
  38. Stahlhut M, van Deurs B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 2000;11:325-37
  39. Stephens JM, Pilch PF. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocrine Rev 1995;16:529-46
  40. Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 1997;138:2005-10 https://doi.org/10.1210/en.138.5.2005
  41. Thomson MJ, William MG, Frost SC. Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem 1997;272: 7759-64 https://doi.org/10.1074/jbc.272.12.7759
  42. Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 2001;108:371-81
  43. Tsakiridis T, Vranic M, Klip A. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 1994;269:29934-42
  44. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BT, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y, Kadowaki T. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998;273:5315-22 https://doi.org/10.1074/jbc.273.9.5315
  45. Uittenbogaard A, Shaul PW, Yuhanna IS, Blair A, Smart EJ. High density lipoprotein prevents oxidized low density protein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem 2000; 275:11278-83 https://doi.org/10.1074/jbc.275.15.11278
  46. Wang QH, Bilan PJ, Tsakiridis T, Hinek A, Klip A. Actin filaments participate in the relocalization of phosphatidylinositol 3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem. J 1998;331:917-28
  47. Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers Jr MG, Ishikawa Y. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998;273:26962-8 https://doi.org/10.1074/jbc.273.41.26962
  48. Yu B, Poirier LA, Nagy LE. Mobilization of GLUT4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes. Am J Physiol 1999;277:E259-E267