DOI QR코드

DOI QR Code

Spatial and Temporal Distribution of Inorganic Nutrients and Factors Controlling Their Distributions in Gwangyang Bay

광양만에서 무기 영양염의 시공간적 분포를 조절하는 요인

  • 장풍국 (한국해양연구원 남해연구소) ;
  • 이원제 (경남대학교 공과대학 환경공학과) ;
  • 장민철 (한국해양연구원 남해연구소) ;
  • 이재도 (한국해양연구원 남해연구소) ;
  • 이우진 (한국해양연구원 남해연구소) ;
  • 장만 (한국해양연구원 남해연구소) ;
  • 황근춘 (한국해양연구원 남해연구소) ;
  • 신경순 (한국해양연구원 남해연구소)
  • Published : 2005.12.31

Abstract

In order to understand the spatial and temporal variations of nutrients and factors controlling their distribution in Gwangyang Bay, this study was carried out bimonthly from June 2001 to July 2003, Inorganic silicate and nitrate concentrations ranged from $0.04{\mu}M\;to\;69.5{\mu}M(avg.\;12.9{\mu}M)$, and from $0.12{\mu}M\;to\;42.2{\mu}M\;(avg.\;7.83{\mu}M)$, respectively. Silicate concentrations measured just after the typhoon were the highest with an average of $43.2{\mu}M$ at the surface layer in June 2001, whereas the highest nitrate concentration $(avg.\;37.0{\mu}M)$ was observed in the surface layer in July 2003. River runoff apparently influenced variations in silicate and nitrate concentrations (r=0.701 and 0.728, p<0.000, respectively) as well as salinity (r=-0.628, p<0.000). Phosphate concentrations ranged from $0.24{\mu}M\;to\;5.70{\mu}M\;(avg.\;1.34{\mu}M)$ and were highest at stations 5, 6, and 7, near a fertilizer plant with an average of $2.01{\mu}M$. On the basis of N/P and Si/N molar ratios, limiting nutrients have varied temporary and spatially. During 2001-2002, nitrogen was a limiting nutrient in the study area, and Phosphate was limited when a large volume of freshwater flowed into the bay. Silicate was limited when the high standing crops of phytoplankton occurred in the whole study area throughout 2003, and in the inner bay in February and August 2002. During the study period, factors controlling the distribution of nutrients might be summarized as follows; 1) inflow of freshwater by heavy rain accompanied by typhoons and frequent rainfall in summer, showing high concentrations of silicate and nitrate, 2) release of high phosphate concentrations from the fertilizer plant located in the south of Moydo to adjacent stations, 3) release of nutrients from bottom sediment, 4) magnitude of occurrence of phytoplankton standing crops.

Keywords

References

  1. 권기영, 문창호, 이재성, 양성렬, 박미옥, 이필용. 2004. 섬진강 하구역에서 영양염의 하구내 거동과 플럭스. 한국해양학회지, 9(4), 153-163.
  2. 김도희, 조현식, 이영식. 2005. 광양만으로 유입되는 질소, 인의 점원 오염부화 특성. 한국해양환경공학회지, 8(1), 1-8.
  3. 이동섭. 1999. 여름과 겨울철 남해의 영양염 분포 특성. 한국해양학회지, 4(4), 371-382.
  4. 이영식. 1997. 히로시아만에 있어서 부영영화의 원인. 대한환경공학회지, 19(3), 371-380.
  5. 이영식. 2002. 여수 돌산도 동부 연안해역에서 담수 유입에 의한 규조적조발생. 대한환경공학회지, 24(3), 477-488.
  6. 이영식, 유준, 권기영, 최용규, 조은섭. 2004. 광양만에서 식물플랑크톤증식 제한영양염의 시공간적인 변동 특성. 대한환경공학회지, 26(8), 890-895.
  7. 이영식, 이재성, 정래흥, 김성수, 고우진, 김귀영, 박종수. 2001. 광양만에서 식물플랑크톤증식의 제한영양염. 한국해양학회지, 6(3), 201-210.
  8. 이원제, 박남주, 노재훈, 이재도, 장풍국, 장만, 신경순. 2004. 광양만에서 식물플랑크톤의 시.공간적 변화. 경남대학교 환경문제연구소 환경연구, 27, 105-127.
  9. 이찬원, 권영택, 박동규, 김봉진. 1995. 남해연안 퇴적물내 인과 중금속의 존재형태. 대한환경공학회지, 17(7), 661-674.
  10. 이찬원, 권영택, 양기섭, 장풍국, 한성대. 1998. 폐쇄성 해역의 오염부하 특성과 해역환경변화. 해양환경공학회지, 1(2), 60-70.
  11. 임동일, 엄인권, 전수경, 유재명, 정회수. 2003. 한국 남해 연안역에서 여름 홍수기에 형성된 연안 염화구 환경의 물리-화학적 특성. 한국해양학회지, 8(2), 151-163.
  12. 장민철, 장풍국, 신경순, 박동원, 장만. 2004. 광양만 동물플랑크톤 군집의 계절변화. 환경생물학회지, 22, 11-19.
  13. 한국해양연구원. 1999. 시화호의 환경변화 조사 및 보존대책 수립에 관한 연구. BSPE 98705-01-34. 54-56 p.
  14. 한국해양연구원. 2003. 남해 특별관리 해역의 환경오염 관리 모텔 연구. (1) 광양만 중심 연구. 한국해양연구원, PE836-00, 85-86 p.
  15. 해양수산부. 2003. 새만금 해양환경보존대책을 위한 조사연구. BSPM 139-03-1514-4, 61-79 p.
  16. Arhonditsis, G., G. Tsirtsis, and M. Karydis. 2002. The effects of episodic rainfall events to the dynamics of coastal marine ecosystems: applications to a semienclosed gulf in the Meditteranean Sea. J. Mar. Syst., 35, 183-205. https://doi.org/10.1016/S0924-7963(02)00081-7
  17. Billen, G., C. Lancelot, and M. Mayberk. 1991. N, P, Si retention along the aquatic continuum from land to ocean. p. 19-44. In: Ocean Margin Processes in Global Change. ed. by R.F.C. Matoura, J.M. Martin, and R. Wollast. John Wiley & Sons, New York.
  18. Burkholder, J.M. and H.B. Glasgow Jr. 1997. Pfiesteria piscidida and other Pfiesteria like dinoflagellates: behavior, impacts, and environmental controls. Limnol. Oceanogr., 42, 1052-1075. https://doi.org/10.4319/lo.1997.42.5_part_2.1052
  19. Del Amo, Y., O.L. Pape, P. Treguer, B. Queguuiner, A. Menesquen, and A. Aminot. 1997. Impacts of highnitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatomdominated phytoplankton of Bay of Brest(France). Mar. Ecol. Prog. Ser., 161, 213-224. https://doi.org/10.3354/meps161213
  20. Fisher, T.R., E.R. Peele, J.W. Ammerman, and L. Harding. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser., 82, 51-63. https://doi.org/10.3354/meps082051
  21. Graneil, E. 1987. Nutrient limitation of phytoplankton biomass in a brackish water bay highly influenced by river discharge. Estuar. Coastal Shelf Sci., 25, 555-565. https://doi.org/10.1016/0272-7714(87)90114-4
  22. Graneil, E., K. Wallstrom, U. Lursson, W. Graneli, and R. Elmgren. 1990. Nutrient limitation of primary production in the Baltic Sea Area. AMBIO, 19, 142-151.
  23. Hallegraeff, G.M. 1993. A review of harmful algae blooms and the apparent global increase. Phycologia, 32, 79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  24. Hashimoto, T. and S. Nakano. 2003. Effect of nutrient limitation on abundance and growth of phytoplankton in a Japanese Pearl farm. Mar. Ecol. Prog. Ser., 258, 43-50. https://doi.org/10.3354/meps258043
  25. Hecky, R.E. and P. Kilham. 1998. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effect of enrichment. Limnol. Oceanogr., 33, 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  26. Howarth, R.W. 1996. Nitrogen cycling in the North Atlantic and its watersheds. Biogeochemistry, 35(1).
  27. Howarth, R.W., R. Marino, and J.J. Cole. 1988. Nitrogen fixation in freshwater, estuarine, and marine ecosystem. 2. Biolgeochemical controls. Limnol. Oceanogr., 33, 688-701. https://doi.org/10.4319/lo.1988.33.4_part_2.0688
  28. Humborg, C., V. Ittekkot, A. Cociasu, and B.V. Bodungen. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385-388. https://doi.org/10.1038/386385a0
  29. Jankins, M.C. and W.M. Kemp. 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limmol. Oceanog., 29, 609-619. https://doi.org/10.4319/lo.1984.29.3.0609
  30. Kemp, W.M. and W.R. Boynton. 1992. Benthic-pelagic interactions: nutrient and oxygen dynamics. p. 149-221. In: Oxygen Dynamics in the Chesapeake Bay. ed. by D.E. Smith. Maryland Sea Grant College, Maryland.
  31. Lee, P.Y., J.S. Park, C.M. Kang, H.G. Choi, and J.S. Park. 1993. Studies on oxygen-deficient watermass in Chinhae Bay. Bull. Nat. Fish. Res. Dev. Agency, 48, 25-38.
  32. Leland, H.V. 2003. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river. Hydrobiologia, 506-509, 247-255. https://doi.org/10.1023/B:HYDR.0000008596.00382.56
  33. LOICZ. 1995. The Dynamics of Global Change and the Coastal Zone. LOICZ Meeting Report, Texel, 9. 108 p.
  34. Mallin, M.A., L.B. Cahoon, M.R. Mciver, D.C. Parsons, and G.C. Shank. 1999. Alternation of factors limiting phytoplankton production in the Cape Fear river estuary. Estuaries, 22(4), 825-836. https://doi.org/10.2307/1353064
  35. Mann, K.H. 2000. Ecology of Coastal Waters. Blackwell Science. 406 p.
  36. Mclusky, D.S. and M. Elliott. 2004. The Estuarine Ecosystem. Oxford University Press. 214 p.
  37. Mihara, M. 2001. Nitrogen and phosphorus losses soil erosion during a Typhoon, Japan. J. Agr. Eng. Res., 78(2), 209-216. https://doi.org/10.1006/jaer.2000.0643
  38. Moeller, R.E., R.G. Wetzel, and C.W. Osenberg. 1998. Concordance of phosphorus limitation in lake: bacterioplankton, phytoplankton, epiphyte-snail consumers, and rooted macrophytes. p. 318-325. In: The Structuring Role of Submerged Macrophytes in Lakes. ed. by E. Jeppesen, Ma. Sondergaard, Mo. Sondergaard, and K. Christoffersen. Springer-Verlag, New York.
  39. Olsen M., C. Lundsgaard, and A. Andrushaitis. 1999. Influence of nutrients snd mixing on the primary production and community respiration in the Gulf of Riga. J. Mar. Syst., 23, 127-143. https://doi.org/10.1016/S0924-7963(99)00054-8
  40. Paerl, H.W. 1995. Nuisance phytoplankton blooms in coastal, estuarine, and inland water. Limnol. Oceanogr., 33, 823-847. https://doi.org/10.4319/lo.1988.33.4_part_2.0823
  41. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York. 173 p.
  42. Philippart, C.J.M., G.C.W. Cades, and R. Riegman. 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnol. Oceanogr., 45, 131-144. https://doi.org/10.4319/lo.2000.45.1.0131
  43. Pinckney, J., H.W. Paerl, M.B. Harringtom, and K.E. Howe. 1998. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina. Mar. Biol., 131, 371-381. https://doi.org/10.1007/s002270050330
  44. Radach, G., J. Berg, and E. Hagmeier. 1990. Long-term changes of the annual cycles meteorological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV ELBE 1 in the German Bight. Cont. Shelf Res., 10, 305-328. https://doi.org/10.1016/0278-4343(90)90054-P
  45. Richardson, K. 1997. Harmful or exceptional phytoplankton blooms in the marine ecosystem. Adv. Mar. Biol., 31, 301-385 https://doi.org/10.1016/S0065-2881(08)60225-4
  46. Rizzo, W.M. 1990. Nutrient exchange between the water column and a subtidal benthic macroalgal community. Estuaries, 12, 219-226.
  47. Ryther, J.C., W.M. Dunstan, K.R. Tenore, and J.E. Huguenin. 1972. Controlled eutrophication-increasing food protection from the sea by cycling human wastes. Bio-science, 22, 144-152.
  48. Shiah, F.W., S.W. Chung, S.J. Kao, G.C. Gong, and K.K. Liu. 2000. Biological and hydrographical responses to tropical cyclones(typhoons) in the continental shelf of Taiwan strait. Cont. Shelf Res., 20, 2029-2044. https://doi.org/10.1016/S0278-4343(00)00055-8
  49. Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut., 100, 179-196. https://doi.org/10.1016/S0269-7491(99)00091-3
  50. Sutcliffe, W.H. 1972. Some relations of land drainage, nutrients, particulate material and fish catch in two eastern Canadian bays. J. Fish. Res. Bd. Can., 29, 357-362. https://doi.org/10.1139/f72-063
  51. Twomey, L. and P. Thompson. 2001. Nutrient limitation of phytoplankton in seasonally open bar-built estuary: Wilson Inlet, Western Australia. J. Phycol., 37, 16-29. https://doi.org/10.1046/j.1529-8817.1999.014012016.x
  52. Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow coastal estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr., 42, 1105-1118. https://doi.org/10.4319/lo.1997.42.5_part_2.1105
  53. Walsh, J.J. 1991. Importance of the continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53-55. https://doi.org/10.1038/350053a0
  54. Yin, K., P.Y. Quin, M.C.S. Wu, J.C. Chen, L. Huang, X. Song, and W. Jian. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Mar. Ecol. Prog. Ser., 221, 17-28. https://doi.org/10.3354/meps221017

Cited by

  1. Bloom of a Filamentous Green Alga Cladophora vadorum (Areschoug) Kützing and Nutrient Levels at Shangrok Beach, Buan, Korea vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0241
  2. The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay, South Korea vol.14, pp.7, 2017, https://doi.org/10.5194/bg-14-1903-2017
  3. Dominance and Survival Strategy of Toxic Dinoflagellate Alexandrium tamarense and Alexandium catenella Under Dissolved Inorganic Nitrogen-limited Conditions vol.16, pp.1, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.1.25
  4. The Influences of Additional Nutrients on Phytoplankton Growth and Horizontal Phytoplankton Community Distribution during the Autumn Season in Gwangyang Bay, Korea vol.32, pp.1, 2014, https://doi.org/10.11626/KJEB.2014.32.1.035
  5. Temporal Distribution of Pico- and Nanoplankton at a Station in Okkye Bay vol.16, pp.7, 2007, https://doi.org/10.5322/JES.2007.16.7.855
  6. Human and riverine impacts on the dynamics of biogeochemical parameters in Kwangyang Bay, South Korea revealed by time-series data and multivariate statistics vol.90, pp.1-2, 2015, https://doi.org/10.1016/j.marpolbul.2014.08.044
  7. Environmental Factors Affecting Zooplankton Community in Gwangyang Bay vol.35, pp.4, 2017, https://doi.org/10.11626/KJEB.2017.35.4.631